In radiological screening, clinicians scan myriads of radiographs with the intent of recognizing and differentiating lesions. Even though they are trained experts, radiologists’ human search engines are not perfect: average daily error rates are estimated around 3–5%. A main underlying assumption in radiological screening is that visual search on a current radiograph occurs independently of previously seen radiographs. However, recent studies have shown that human perception is biased by previously seen stimuli; the bias in our visual system to misperceive current stimuli towards previous stimuli is called serial dependence. Here, we tested whether serial dependence impacts radiologists’ recognition of simulated lesions embedded in actual radiographs. We found that serial dependence affected radiologists’ recognition of simulated lesions; perception on an average trial was pulled 13% toward the 1-back stimulus. Simulated lesions were perceived as biased towards the those seen in the previous 1 or 2 radiographs. Similar results were found when testing lesion recognition in a group of untrained observers. Taken together, these results suggest that perceptual judgements of radiologists are affected by previous visual experience, and thus some of the diagnostic errors exhibited by radiologists may be caused by serial dependence from previously seen radiographs.
IntroductionRadiologists routinely make life-altering decisions. Optimizing these decisions has been an important goal for many years and has prompted a great deal of research on the basic perceptual mechanisms that underlie radiologists’ decisions. Previous studies have found that there are substantial individual differences in radiologists’ diagnostic performance (e.g., sensitivity) due to experience, training, or search strategies. In addition to variations in sensitivity, however, another possibility is that radiologists might have perceptual biases—systematic misperceptions of visual stimuli. Although a great deal of research has investigated radiologist sensitivity, very little has explored the presence of perceptual biases or the individual differences in these.MethodsHere, we test whether radiologists’ have perceptual biases using controlled artificial and Generative Adversarial Networks-generated realistic medical images. In Experiment 1, observers adjusted the appearance of simulated tumors to match the previously shown targets. In Experiment 2, observers were shown with a mix of real and GAN-generated CT lesion images and they rated the realness of each image.ResultsWe show that every tested individual radiologist was characterized by unique and systematic perceptual biases; these perceptual biases cannot be simply explained by attentional differences, and they can be observed in different imaging modalities and task settings, suggesting that idiosyncratic biases in medical image perception may widely exist.DiscussionCharacterizing and understanding these biases could be important for many practical settings such as training, pairing readers, and career selection for radiologists. These results may have consequential implications for many other fields as well, where individual observers are the linchpins for life-altering perceptual decisions.
Human perception and decisions are biased toward previously seen stimuli. This phenomenon is known as serial dependence and has been extensively studied for the last decade. Recent evidence suggests that clinicians' judgments of mammograms might also be impacted by serial dependence. However, the stimuli used in previous psychophysical experiments on this question, consisting of artificial geometric shapes and healthy tissue backgrounds, were unrealistic. We utilized realistic and controlled generative adversarial network (GAN)-generated radiographs to mimic images that clinicians typically encounter.Approach: Mammograms from the digital database for screening mammography (DDSM) were utilized to train a GAN. This pretrained GAN was then adopted to generate a large set of authentic-looking simulated mammograms: 20 circular morph continuums, each with 147 images, for a total of 2940 images. Using these stimuli in a standard serial dependence experiment, participants viewed a random GANgenerated mammogram on each trial and subsequently matched the GAN-generated mammogram encountered using a continuous report. The characteristics of serial dependence from each continuum were analyzed.Results: We found that serial dependence affected the perception of all naturalistic GAN-generated mammogram morph continuums. In all cases, the perceptual judgments of GAN-generated mammograms were biased toward previously encountered GAN-generated mammograms. On average, perceptual decisions had 7% categorization errors that were pulled in the direction of serial dependence.Conclusions: Serial dependence was found even in the perception of naturalistic GAN-generated mammograms created by a GAN. This supports the idea that serial dependence could, in principle, contribute to decision errors in medical image perception tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.