Aims The EURO-ENDO registry aimed to study the management and outcomes of patients with infective endocarditis (IE). Methods and results Prospective cohort of 3116 adult patients (2470 from Europe, 646 from non-ESC countries), admitted to 156 hospitals in 40 countries between January 2016 and March 2018 with a diagnosis of IE based on ESC 2015 diagnostic criteria. Clinical, biological, microbiological, and imaging [echocardiography, computed tomography (CT) scan, 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT)] data were collected. Infective endocarditis was native (NVE) in 1764 (56.6%) patients, prosthetic (PVIE) in 939 (30.1%), and device-related (CDRIE) in 308 (9.9%). Infective endocarditis was community-acquired in 2046 (65.66%) patients. Microorganisms involved were staphylococci in 1085 (44.1%) patients, oral streptococci in 304 (12.3%), enterococci in 390 (15.8%), and Streptococcus gallolyticus in 162 (6.6%). 18F-fluorodeoxyglucose positron emission tomography/computed tomography was performed in 518 (16.6%) patients and presented with cardiac uptake (major criterion) in 222 (42.9%) patients, with a better sensitivity in PVIE (66.8%) than in NVE (28.0%) and CDRIE (16.3%). Embolic events occurred in 20.6% of patients, and were significantly associated with tricuspid or pulmonary IE, presence of a vegetation and Staphylococcus aureus IE. According to ESC guidelines, cardiac surgery was indicated in 2160 (69.3%) patients, but finally performed in only 1596 (73.9%) of them. In-hospital death occurred in 532 (17.1%) patients and was more frequent in PVIE. Independent predictors of mortality were Charlson index, creatinine > 2 mg/dL, congestive heart failure, vegetation length > 10 mm, cerebral complications, abscess, and failure to undertake surgery when indicated. Conclusion Infective endocarditis is still a life-threatening disease with frequent lethal outcome despite profound changes in its clinical, microbiological, imaging, and therapeutic profiles.
Human obesity is characterized by profound alterations in the hemodynamic and metabolic states. Whether these alterations involve sympathetic drive is controversial. In 10 young obese subjects (body mass index, 40.5 +/- 1.2 kg/m2, mean +/- SEM) with normal blood pressure and 8 age-matched lean normotensive control subjects, we measured beat-to-beat arterial blood pressure (Finapres technique), heart rate (electrocardiogram), postganglionic muscle sympathetic nerve activity (microneurography at the peroneal nerve), and venous plasma norepinephrine (high-performance liquid chromatography). The measurements were performed in baseline conditions and, with the exception of plasma norepinephrine, during baroreceptor stimulation and deactivation caused by increases and reductions of blood pressure via intravenous infusions of phenylephrine and nitroprusside. Baseline blood pressure and heart rate were similar in obese and control subjects. Plasma norepinephrine was also similar in the two groups. Muscle sympathetic nerve activity, however, was 38.6 +/- 5.1 bursts per minute in obese subjects and less than half that level in control subjects (18.7 +/- 1.3 bursts per minute), the difference being highly statistically significant (P < .02). Muscle sympathetic nerve activity and heart rate were reduced during phenylephrine infusion and increased during nitroprusside infusion, but the changes were about half as great in obese subjects as in control subjects. Thus, even in the absence of any blood pressure alteration, human obesity is characterized by a marked sympathetic activation, possibly because of an impairment of reflex sympathetic restraint. This may be involved in the high rate of hypertension and cardiovascular complications seen in obesity.
Abstract-Although animal models of hypertension have clearly shown that high blood pressure is associated with and is probably caused by an increase in sympathetic cardiovascular influences, a similar demonstration in humans has been more difficult to obtain for methodological reasons. There is now evidence, however, of increased sympathetic activity in essential hypertension. This article will review this evidence by examining data showing that plasma norepinephrine is increased in essential hypertension and that this is also the case for systemic and regional norepinephrine spillover, as well as for the sympathetic nerve firing rate in the skeletal muscle nerve district. Evidence will also be provided that sympathetic activation is a peculiar feature of essential hypertension, particularly in its early stages, with secondary forms of high blood pressure not usually characterized by an increased central sympathetic outflow. Humoral, metabolic, reflex, and central mechanisms are likely to be the factors responsible for the adrenergic activation characterizing hypertension, which may also promote the development and progression of the cardiac and vascular alterations that lead to hypertension-related morbidity and mortality, independent of blood pressure values. This represents the rationale for considering sympathetic deactivation one of the major goals of antihypertensive treatment. Key Words: nervous system, sympathetic Ⅲ hypertension, essential Ⅲ hypertension, secondary Ⅲ pressoreceptors Ⅲ hypertrophy Ⅲ norepinephrine N eural adrenergic factors have long been hypothesized to be important in the initiation and maintenance of high blood pressure (BP). For a long time, however, the evidence supporting this hypothesis was largely limited to the results of studies performed in different animal models of hypertension (HT), in which an enhanced sympathetic drive to the heart and peripheral circulation was shown either to trigger a persistent BP elevation or to maintain the BP elevation originally induced by nonadrenergic mechanisms. [1][2][3][4] This picture has changed in the past 20 years or so because a variety of techniques that allow indirect or direct quantification of adrenergic cardiovascular influences have all provided evidence of an activation of the sympathetic nervous system (SNS) in human HT as well. This article will review the evidence that sympathetic activity is increased in essential HT and that this increase may have a pathogenetic role. It will also discuss 2 other issues, ie, (1) the mechanisms that lead to sympathetic hyperactivity in essential HT and (2) the role exerted by this hyperactivity in the progression of the cardiovascular alterations that may complicate the hypertensive state. Evidence for Sympathetic ActivationIn the past 30 years, several techniques designed to quantify sympathetic cardiovascular influences in humans have shown them to be increased in essential HT. More than 25 years ago, for example, Julius and coworkers 5 showed that the elevated resting heart rate values of bo...
In this contemporary study, overall serious adverse events after AM were lower than previously reported. However, patients with left ventricular ejection fraction <50%, ventricular arrhythmias, or low cardiac output syndrome at presentation were at higher risk compared with uncomplicated cases that had a benign prognosis and low risk of subsequent left ventricular systolic dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.