A fast, efficient and simple method is presented for the production of high quality graphene on a large scale by using an atmospheric pressure plasma-based technique. This technique allows to obtain high quality graphene in powder in just one step, without the use of neither metal catalysts and nor specific substrate during the process. Moreover, the cost for graphene production is significantly reduced since the ethanol used as carbon source can be obtained from the fermentation of agricultural industries. The process provides an additional benefit contributing to the revalorization of waste in the production of a high-value added product like graphene. Thus, this work demonstrates the features of plasma technology as a low cost, efficient, clean and environmentally friendly route for production of high-quality graphene.
The analytical potential of ArF* excimer Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is investigated for fast qualitative depth profile analysis of multi-layer CdTe photovoltaic (PV) devices.
The performance of glow discharge optical emission spectroscopy and mass spectrometry for oxygen determination is investigated using a set of new conductive samples containing oxygen in the percent range in three different matrices (Al, Mg, and Cu) prepared by a sintering process. The sputtering rate corrected calibrations obtained at standard conditions for the 4 mm anode (700 V, 20 mA) in GD-OES are matrix independent for Mg and Al but not for Cu. The importance of a “blue shifted” line of oxygen at 130.22 nm (first reported by Köster) for quantitative analyses by GD-OES is confirmed. Matrix-specific calibrations for oxygen in GD-MS are presented. Two source concepts—fast flow (ELEMENT GD) and low gas flow (VG9000)—are evaluated obtaining higher sensitivity with the static flow source. Additional experiments using Ar-He mixtures or μs pulsed GD are carried out in ELEMENT GD aiming to improve the oxygen sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.