The aim of this study was to determine the prevalence of sarcosporidiosis in semi-intensively bred cattle in northwestern Italy. A diagnostic protocol was setup in which infected animals were identified by rapid histological examination of the esophagus, diaphragm, and heart and the detected Sarcocystis spp. were subsequently typed using conventional electron microscopy in combination with molecular techniques. Sarcosporidia cysts were detected in 78.1% of the animals and were seen most often in the esophagus. The cattle is intermediate host for Sarcocystis hominis (final host, humans and some primates), Sarcocystis cruzi (final host, domestic and wild canids), and Sarcocystis hirsuta (final host, wild and domestic cats).All these three species of Sarcocystis were identified, variously associated, with the following prevalence: S. cruzi (74.2%), S. hirsuta (1.8%), and S. hominis (42.7%). Furthermore, a new S. hominis-like (prevalence 18.5%), characterized by hook-like structures of villar protrusion and a different sequence of the 18S rRNA gene, was identified. The cattle sheds testing positive for zoonotic Sarcocystis were assessed for risk factors contributing to the maintenance of the parasite's life cycle. Significant associations emerged between consumption of raw meat by the farm owner, mountain pasturing, and absence of a sewerage system on the farm and cattle breed. Our study demonstrates that sarcosporidiosis may constitute a public health problem in Italy and indicates several issues to be addressed when planning surveillance and prevention actions. The applied diagnostic approach revealed that cattle can harbor a further type of Sarcocystis, of which life cycle and zoonotic potential should be investigated.
Kobuvirus RNA was found in 6.6 % (13/198) of stool specimens from roe deer (Capreolus capreolus) captured during the regular hunting season. Upon sequence analysis of a fragment of the 3D gene, nine strains displayed the highest nucleotide sequence identity (91.2-97.4 %) to bovine kobuviruses previously detected in either diarrhoeic or asymptomatic calves. Interestingly, four strains were genetically related to the newly discovered caprine kobuviruses (84.2-87.6 % nucleotide identity) identified in black goats in Korea.
Autism spectrum disorders (ASDs) represent a diagnostic challenge with a still partially uncertain etiology, in which genetic and environmental factors have now been assessed. Among the hypotheses underlying the involvement of biological and environmental factors, the gut–brain axis is of particular interest in autism spectrum disorders. Several studies have highlighted the related incidence of particular gastrointestinal symptoms (GISs) in children suffering from ASDs. Probiotics have shown success in treating several gastrointestinal dysbiotic disorders; therefore, it is plausible to investigate whether they can alleviate behavioral symptoms as well. On these bases, a randomized double-blind crossover study with a placebo was conducted, evaluating the effects of a mixture of probiotics in a group of 61 subjects aged between 24 months and 16 years old with a diagnosis of ASD. Behavioral evaluation was performed through the administration of a questionnaire including a Parenting Stress Index (PSI) test and the Vineland Adaptive Behavior Scale (VABS). The Psycho-Educational Profile and the Autism Spectrum Rating Scale (ASRS) were also evaluated. Microbial composition analyses of fecal samples of the two groups was also performed. The study showed significant improvements in GISs, communication skills, maladaptive behaviors, and perceived parental stress level after the administration of probiotics. Microbiome alpha diversity was comparable between treatment arms and no significant differences were found, although beta diversity results were significantly different in the treatment group between T0 and T1 time points. Streptococcus thermophilus, Bifidobacterium longum, Limosilactobacillus fermentum, and Ligilactobacillus salivarius species were identified as some of the most discriminant taxa positively associated with T1 samples. This preliminary study corroborates the relationship between intestinal microbiota and ASD recently described in the literature.
Introduction Yersiniosis is a zoonosis causing gastroenteritis, diarrhoea, and occasionally reactive arthritis and septicaemia. Cases are often linked to meat consumption and the most common aetiological agent is the Gram-negative bacilliform Yersinia enterocolitica bacterium. The occurrence of Yersinia spp. among wild animals has mostly been studied in wild boar, but it has seldom been in other species. Material and Methods A total of 1,868 faecal samples from animals found dead or hunted were collected between 2015 and 2018 in the Valle d’Aosta region of the northwestern Italian Alps. Alpine ibex faecal samples were collected during a health monitoring program in 2018. Bacteria were isolated via PCR and confirmed as Y. enterocolitica biochemically. Strain antimicrobial susceptibility was tested by Kirby–Bauer disc diffusion, and the presence of virulence factors and antimicrobial resistance genes was investigated using whole-genome sequencing. Results Yersinia enterocolitica strains of biotype 1A were detected in six faecal samples from red deer (0.93%), roe deer (0.49%) and red foxes (0.7%). Strains found in beech martens (3.57%) and Alpine ibex (2.77%) belonged to biotypes 1B and 5, respectively and harboured the pYPTS01 plasmid that had only been detected in Y. pseudotuberculosis PB1/+. All the isolates were resistant to ampicillin and erythromycin. Conclusion The biovar 1A strains exhibited different virulence factors and behaved like non-pathogenic commensals. The strain from an Alpine ibex also harboured the self-transmissible pYE854 plasmid that can mobilise itself and the pYPTS01 plasmid to other strains. The beech marten could be considered a sentinel animal for Y. enterocolitica. Phenotypic resistance may account for the ability of all the strains to resist β-lactams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.