The herbicide paraquat (PQ) induces the selective necrosis of type I and type II alveolar pneumocytes. We investigated the effect of PQ on human lung A549 cells to determine the possible role of cytoskeleton in lung cytotoxicity. At 80 mumol/L PQ, a concentration that did not affect cell viability, the organization of actin cytoskeleton network depended on incubation time with the herbicide. Microfilaments appeared less numerous in 30% of the cells treated for 1 h. After 24 h, all the treated cells displayed only short filaments in the periphery. The effect of PQ on actin cytoskeleton was irreversible. Moreover, no modification of microtubule network was observed in PQ-treated cells. Next, we studied the effect of PQ on Chang Liver, an epithelial cell line from human liver. These cells appeared less sensitive to the herbicide than A549, and no cytoskeletal alteration was observed. To verify whether actin filament modifications in A549 cells were related to intracellular alterations of ATP concentrations, nucleotide levels during incubation with PQ were determined. The intracellular levels of ATP were not different in control and treated cells. Our results indicate that PQ induces specifically an irreversible actin filament disorganization on A549 cells and that the observed effect is independent of intracellular concentration of ATP.
In vivo, the neurotoxin MPTP is oxidated to MPP+, which is toxic to dopaminergic neurons. In this paper, we have used MPP+ as a tool to evoke neurotoxicity in the PC12 cell line and investigate the intracellular events that are involved. A cytotoxicity test, performed on undifferentiated and NGF-differentiated PC12 cells, showed that MPP+ is much more toxic on differentiated cells and indicated the suitable range of concentrations for studying the starting events evoked by the neurotoxin. By indirect immunofluorescence we have shown that the localisation of alpha- and beta -tubulin in NGF-differentiated cells was modified by a 24 h treatment with 15 mumol/l MPP+. A biochemical analysis was performed on cell extracts and the results showed that MPP+ treatment induced an increase in alpha -tubulin levels and a decrease in beta -tubulin levels. These results suggest the involvement of the two microtubule proteins in MPP+ neurotoxicity on NGF-differentiated PC12 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.