SignificanceThe Staphylococcus aureus surface protein clumping factor A (ClfA) binds to the blood plasma protein fibrinogen (Fg) via molecular interactions that are poorly understood. Here, we unravel the forces guiding the interaction between ClfA and immobilized Fg, showing that it is dramatically enhanced by tensile loading. Our findings favor a model whereby ClfA interacts with Fg via two distinct binding sites, the adhesive function of which is tightly regulated by mechanical force. Reminiscent of a catch bond mechanism, this force-enhanced adhesion explains the ability of ClfA to promote S. aureus colonization of host tissues and biomedical devices under physical stress.
Nature has evolved several molecular strategies to ensure adhesion in aqueous environments, where artificial adhesives typically fail. One recentlyunveiled molecular design for wet-resistant adhesion is the cohesive cross-β structure characteristic of amyloids, complementing the well-established surface-binding strategy of mussel adhesive proteins based on 3,4-l-dihydroxyphenylalanine (Dopa). Structural proteins that self-assemble into cross β-sheet networks are the suckerins discovered in the sucker ring teeth of squids. Here, light is shed on the wet adhesion of cross-β motifs by producing recombinant suckerin-12, naturally lacking Dopa, and investigating its wet adhesion properties. Surprisingly, the adhesion forces measured on mica reach 70 mN m −1 , exceeding those measured for all mussel adhesive proteins to date. The pressure-sensitive adhesion of artificial suckerins is largely governed by their cross-β motif, as evidenced using control experiments with disrupted cross-β domains that result in complete loss of adhesion. Dopa is also incorporated in suckerin-12 using a residue-specific incorporation strategy that replaces tyrosine with Dopa during expression in Escherichia coli. Although the replacement does not increase the long-term adhesion, it contributes to the initial rapid contact and enhances the adsorption onto model oxide substrates. The findings suggest that suckerins with supramolecular cross-β motifs are promising biopolymers for wet-resistant adhesion.
Using a surface forces apparatus and an atomic force microscope, we characterized the adhesive properties of adsorbed layers of two recombinant variants of Perna viridis foot protein 5 (PVFP-5), the main surface-binding protein in the adhesive plaque of the Asian green mussel. In one variant, all tyrosine residues were modified into 3,4-dihydroxy-Lphenylalanine (DOPA) during expression using a residuespecific incorporation strategy. DOPA is a key molecular moiety underlying underwater mussel adhesion. In the other variant, all tyrosine residues were preserved. The layer was adsorbed on a mica substrate and pressed against an uncoated surface. While DOPA produced a stronger adhesion than tyrosine in contact with the nanoscopic Si 3 N 4 probe of the atomic force microscope, the two variants produced comparable adhesion on the curved macroscopic mica surfaces of the surface forces apparatus. These findings show that the presence of DOPA is not a sufficient condition to generate strong underwater adhesion. Surface chemistry and contact geometry affect the strength and abundance of protein−surface bonds created during adsorption and surface contact. Importantly, the adsorbed protein layer has a random and dynamic polymer-network structure that should be optimized to transmit the tensile stress generated during surface separation to DOPA surface bonds rather than other weaker bonds.
The corneal stroma exhibits unique anisotropic elastic behavior at the tissue and molecular levels. This knowledge may benefit modeling of corneal behavior and help in the development of biomimetic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.