Background Imipenem/relebactam is a novel carbapenem/β-lactamase inhibitor combination, developed to act against carbapenemase-producing Enterobacterales (CPE). Objectives To assess the in vitro activity of imipenem/relebactam against a Spanish nationwide collection of CPE by testing the susceptibility of these isolates to 16 widely used antimicrobials and to determine the underlying β-lactam resistance mechanisms involved and the molecular epidemiology of carbapenemases in Spain. Materials and methods Clinical CPE isolates (n = 401) collected for 2 months from 24 hospitals in Spain were tested. MIC50, MIC90 and susceptibility/resistance rates were interpreted in accordance with the EUCAST guidelines. β-Lactam resistance mechanisms and molecular epidemiology were characterized by WGS. Results For all isolates, high rates of susceptibility to colistin (86.5%; MIC50/90 = 0.12/8 mg/L), imipenem/relebactam (85.8%; MIC50/90 = 0.5/4 mg/L) and ceftazidime/avibactam (83.8%, MIC50/90 = 1/≥256 mg/L) were observed. The subgroups of isolates producing OXA-48-like (n = 305, 75.1%) and KPC-like enzymes (n = 44, 10.8%) were highly susceptible to ceftazidime/avibactam (97.7%, MIC50/90 = 1/2 mg/L) and imipenem/relebactam (100.0%, MIC50/90 = ≤0.25/1 mg/L), respectively. The most widely disseminated high-risk clones of carbapenemase-producing Klebsiella pneumoniae across Spain were found to be ST11, ST147, ST392 and ST15 (mostly associated with OXA-48) and ST258/512 (in all cases producing KPC). Conclusions Imipenem/relebactam, colistin and ceftazidime/avibactam were the most active antimicrobials against all CPEs. Imipenem/relebactam is a valuable addition to the antimicrobial arsenal used in the fight against CPE, particularly against KPC-producing isolates, which in all cases were susceptible to this combination.
Background The development of resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of Pseudomonas aeruginosa infections is concerning. Objectives Characterization of the mechanisms leading to the development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR P. aeruginosa infections. Methods Four paired ceftolozane/tazobactam- and ceftazidime/avibactam-susceptible/resistant isolates were evaluated. MICs were determined by broth microdilution. STs, resistance mechanisms and genetic context of β-lactamases were determined by genotypic methods, including WGS. The OXA-10 variants were cloned in PAO1 to assess their impact on resistance. Models for the OXA-10 derivatives were constructed to evaluate the structural impact of the amino acid changes. Results The same XDR ST253 P. aeruginosa clone was detected in all four cases evaluated. All initial isolates showed OprD deficiency, produced an OXA-10 enzyme and were susceptible to ceftazidime, ceftolozane/tazobactam, ceftazidime/avibactam and colistin. During treatment, the isolates developed resistance to all cephalosporins. Comparative genomic analysis revealed that the evolved resistant isolates had acquired mutations in the OXA-10 enzyme: OXA-14 (Gly157Asp), OXA-794 (Trp154Cys), OXA-795 (ΔPhe153-Trp154) and OXA-824 (Asn143Lys). PAO1 transformants producing the evolved OXA-10 derivatives showed enhanced ceftolozane/tazobactam and ceftazidime/avibactam resistance but decreased meropenem MICs in a PAO1 background. Imipenem/relebactam retained activity against all strains. Homology models revealed important changes in regions adjacent to the active site of the OXA-10 enzyme. The blaOXA-10 gene was plasmid borne and acquired due to transposition of Tn6746 in the pHUPM plasmid scaffold. Conclusions Modification of OXA-10 is a mechanism involved in the in vivo acquisition of resistance to cephalosporin/β-lactamase inhibitor combinations in P. aeruginosa.
Background Pseudomonas aeruginosa may develop resistance to novel cephalosporin/β-lactamase inhibitor combinations during therapy through the acquisition of structural mutations in AmpC. Objectives To describe the molecular and biochemical mechanisms involved in the development of resistance to ceftolozane/tazobactam in vivo through the selection and overproduction of a novel AmpC variant, designated PDC-315. Methods Paired susceptible/resistant isolates obtained before and during ceftolozane/tazobactam treatment were evaluated. MICs were determined by broth microdilution. Mutational changes were investigated through WGS. Characterization of the novel PDC-315 variant was performed through genotypic and biochemical studies. The effects at the molecular level of the Asp245Asn change were analysed by molecular dynamics simulations using Amber. Results WGS identified mutations leading to modification (Asp245Asn) and overproduction of AmpC. Susceptibility testing revealed that PAOΔC producing PDC-315 displayed increased MICs of ceftolozane/tazobactam, decreased MICs of piperacillin/tazobactam and imipenem and similar susceptibility to ceftazidime/avibactam compared with WT PDCs. The catalytic efficiency of PDC-315 for ceftolozane was 10-fold higher in relation to the WT PDCs, but 3.5- and 5-fold lower for piperacillin and imipenem. IC50 values indicated strong inhibition of PDC-315 by avibactam, but resistance to cloxacillin inhibition. Analysis at the atomic level explained that the particular behaviour of PDC-315 is linked to conformational changes in the H10 helix that favour the approximation of key catalytic residues to the active site. Conclusions We deciphered the precise mechanisms that led to the in vivo emergence of resistance to ceftolozane/tazobactam in P. aeruginosa through the selection of the novel PDC-315 enzyme. The characterization of this new variant expands our knowledge about AmpC-mediated resistance to cephalosporin/β-lactamase inhibitors in P. aeruginosa.
The pyrrole-imidazoles, a group of alkaloids commonly found in marine sponges belonging to the genus Agelas, display a wide range of biological activities. Herein, we report the first chemical study of the secondary metabolites of the sponge A. dilatata from the coastal area of the Yucatan Peninsula (Mexico). In this study, we isolated eight known alkaloids from an organic extract of the sponge. We used NMR and MS analysis and comparison with existing databases to characterize the alkaloids: ageliferin (1), bromoageliferin (2), dibromoageliferin (3), sceptrin (4), nakamuric acid (5), 4-bromo-1H-pyrrole-2-carboxylic acid (6), 4,5-dibromopyrrole-2-carboxylic acid (7) and 3,7-dimethylisoguanine (8). We also evaluated, for the first time, the activity of these alkaloids against the most problematic multidrug-resistant (MDR) pathogens, i.e., the Gram-negative bacteria Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Bromoageliferin (2) displayed significant activity against P. aeruginosa. Comparison of the antibacterial activity of ageliferins 1–3 (of similar structure) against P. aeruginosa revealed some relationship between structure and activity. Furthermore, in in vitro assays, 2 inhibited growth and biofilm production in clinical strains of P. aeruginosa. Moreover, 2 increased the survival time in an in vivo Galleria mellonella model of infection. The findings confirm bromoageliferin (2) as a potential lead for designing new antibacterial drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.