Nm23-H1 is a metastasis suppressor gene whose overexpression is associated with both reduced cell motility in various cancers and increased metastatic potential in neuroblastomas, osteosarcomas, and hematological malignances. We previously reported that Nm23-H1 exerts tumor suppressor action in prostate cancer cells and that h-Prune, which is overexpressed in various tumor types, binds Nm23-H1. Moreover, blockage of the Nm23-H1/h-Prune interaction with a competitive permeable peptide (CPP) attenuates migration of breast and neuroblastoma cells. This series of events suggests that the Nm23-H1/h-Prune protein complex regulates cancer progression and that its specific impairment could be a new therapeutic strategy in oncology. We found that CPP leads to inhibition of the AKT/mTORv and NF-kBv signaling pathways and also activates apoptosis. To obtain a proof-of-concept of our hypothesis, we used a xenograft model of prostate cancer to evaluate whether impairment of this complex using CPP results in an anti-tumoral effect. Using a mouse orthotopic model with bioluminescent imaging, we show evidences that CPP reduces prostate cancer metastases formation. In conclusion, CPP being able to impair formation of the h-Prune/Nm23-H1 complex holds promise for the treatment of prostate cancer.
Several genes encoding for proteins involved in proliferation, invasion, and apoptosis are known to be direct miR-34a targets. Here, we used proteomics to screen for targets of miR-34a in neuroblastoma (NBL), a childhood cancer that originates from precursor cells of the sympathetic nervous system. We examined the effect of miR-34a overexpression using a tetracycline inducible system in two NBL cell lines (SHEP and SH-SY5Y) at early time points of expression (6, 12, and 24 h). Proteome analysis using post-metabolic labeling led to the identification of 2,082 proteins, and among these 186 were regulated (112 proteins down-regulated and 74 up-regulated). Prediction of miR-34a targets via bioinformatics showed that 32 transcripts held miR-34a seed sequences in their 3-UTR. By combining the proteomics data with Kaplan Meier geneexpression studies, we identified seven new gene products (ALG13, TIMM13, TGM2, ABCF2, CTCF, Ki67, and LYAR) that were correlated with worse clinical outcomes. These were further validated in vitro by 3-UTR seed sequence regulation. In addition, Michigan Molecular Interactions searches indicated that together these proteins affect signaling pathways that regulate cell cycle and proliferation, focal adhesions, and other cellular properties that overall enhance tumor progression (including signaling pathways such as TGF-, WNT, MAPK, and FAK). In conclusion, proteome analysis has here identified early targets of miR-34a with relevance to NBL tumorigenesis. Along with the results of previous studies, our data strongly suggest miR-34a as a useful tool for improving the chance of therapeutic success with NBL. Molecular
CD56+ T cells are a group of pro‐inflammatory CD3+ lymphocytes with characteristics of natural killer cells, being involved in antimicrobial immune defense. Here, we performed deep phenotypic profiling of CD3+CD56+ cells in peripheral blood of normal human donors and individuals sensitized to birch‐pollen or/and house dust mite by high‐dimensional mass cytometry combined with manual and computational data analysis. A co‐regulation between major conventional T‐cell subsets and their respective CD3+CD56+ cell counterparts appeared restricted to CD8+, MAIT, and TCRγδ+ T‐cell compartments. Interestingly, we find a co‐regulation of several CD3+CD56+ cell subsets in allergic but not in healthy individuals. Moreover, using FlowSOM, we distinguished a variety of CD56+ T‐cell phenotypes demonstrating a hitherto underestimated heterogeneity among these cells. The novel CD3+CD56+ subset description comprises phenotypes superimposed with naive, memory, type 1, 2, and 17 differentiation stages, in part represented by a phenotypical continuum. Frequencies of two out of 19 CD3+CD56+ FlowSOM clusters were significantly diminished in allergic individuals, demonstrating less frequent presence of cells with cytolytic, presumably protective, capacity in these donors consistent with defective expansion or their recruitment to the affected tissue. Our results contribute to defining specific cell populations to be targeted during therapy for allergic conditions.
Prune-1 correlates to M2-TAMs confirming lung metastatic dissemination in GEMM Cytokines and EV proteins are responsible of M2-TAMs polarization processes A small molecule with immunomodulatory properties ameliorates metastatic dissemination Identification of gene variants within immune response and cell adhesion in TNBC
CD4+CXCR5+Foxp3+ T-follicular regulatory (TFR) cells control the germinal center responses. Like T-follicular helper cells, they express high levels of Nuclear Factor of Activated T-cells c1, predominantly its short isoform NFATc1/αA. Ablation of NFATc1 in Tregs prevents upregulation of CXCR5 and migration of TFR cells into B-cell follicles. By contrast, constitutive active NFATc1/αA defines the surface density of CXCR5, whose level determines how deep a TFR migrates into the GC and how effectively it controls antibody production. As one type of effector Treg, TFR cells express B lymphocyte-induced maturation protein-1 (Blimp-1). Blimp-1 can directly repress Cxcr5 and NFATc1/αA is necessary to overcome this Blimp-1-mediated repression. Interestingly, Blimp-1 even reinforces the recruitment of NFATc1 to Cxcr5 by protein-protein interaction and by those means cooperates with NFATc1 for Cxcr5 transactivation. On the contrary, Blimp-1 is necessary to counterbalance NFATc1/αA and preserve the Treg identity. This is because although NFATc1/αA strengthens the follicular development of Tregs, it bears the inherent risk of causing an ex-Treg phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.