Numerous immunostimulatory protocols inhibit the development of T cell-mediated autoimmune insulin-dependent diabetes mellitus (IDDM) in the nonobese diabetic (NOD) mouse model. Many of these protocols, including treatment with the nonspecific immunostimulatory agents CFA or bacillus Calmette-Guérin (BCG) vaccine, have been reported to mediate protection by skewing the pattern of cytokines produced by pancreatic β-cell autoreactive T cells from a Th1 (IFN-γ) to a Th2 (IL-4 and IL-10) profile. However, most of these studies have documented associations between such cytokine shifts and disease protection rather than a cause/effect relationship. To partially address this issue we produced NOD mice genetically deficient in IFN-γ, IL-4, or IL-10. Elimination of any of these cytokines did not significantly alter the rate of spontaneous IDDM development. Additional experiments using these mice confirmed that CFA- or BCG-elicited diabetes protection is associated with a decreased IFN-γ to IL-4 mRNA ratio within T cell-infiltrated pancreatic islets, but this is a secondary consequence rather than the cause of disease resistance. Unexpectedly, we also found that the ability of BCG and, to a lesser extent, CFA to inhibit IDDM development in standard NOD mice is actually dependent upon the presence of the Th1 cytokine, IFN-γ. Collectively, our studies demonstrate that while Th1 and Th2 cytokine shifts may occur among β-cell autoreactive T cells of NOD mice protected from overt IDDM by various immunomodulatory therapies, it cannot automatically be assumed that this is the cause of their disease resistance.
There have been two previous conflicting reports that the development of T-cell-mediated autoimmune diabetes (type 1 diabetes) was respectively unaffected or inhibited in NOD mice genetically deficient in the T-helper (Th) 1 cytokine interferon (IFN)-␥ or the ␣-chain subunit of its receptor. Our goal was to resolve this conundrum by congenically transferring, from a 129 donor strain to the NOD background, a functionally inactivated gene for the -chain signaling (located on chromosome 16) rather than the ␣-chain ligand binding domain (located on chromosome 10) of the IFN-␥ receptor. These NOD.IFN␥RB null mice were characterized by normal patterns of leukocyte development and T-cells that produced greatly enhanced levels of the putatively type 1 diabetes-protective Th2 cytokine interleukin (IL)-4. However, despite being unable to respond to the primary Th1 cytokine IFN-␥ and having T-cells that produce greatly enhanced levels of IL-4, NOD.IFN␥RB null mice remained highly susceptible to type 1 diabetes. This result indicated that the previously reported inhibition of type 1 diabetes in NOD mice carrying a functionally inactivated IFN-␥ receptor ␣-chain gene may have been due to a closely linked and previously unidentified diabetes resistance allele. Furthermore, our results indicate that the pathogenicity of diabetogenic T-cells in NOD mice is not dampened by an inability to respond to IFN-␥ and a concurrent shift to greatly enhanced Th2 cytokine production. This finding calls into question whether clinical protocols designed to shift -cell autoreactive T-cells from a Th1 to Th2 cytokine production profile will truly be safe and efficacious in blocking the development of type 1 diabetes in humans. Diabetes
The early three (E3) region of the adenovirus (Ad) encodes a number of immunomodulatory proteins that interfere with class I major histocompatibility-mediated antigen presentation and confer resistance to cytokine-induced apoptosis in cells infected by the virus. Transgenic expression of Ad E3 genes under the rat insulin II promoter (RIP-E3) in -cells in nonobese diabetic (NOD) mice decreases the incidence and delays the onset of autoimmune diabetes. The immune effector cells of RIP-E3/NOD mice maintain the ability to infiltrate the islets and transfer diabetes into NOD-scid recipients, although at a significantly reduced rate compared with wild-type littermates. The islets of RIP-E3/ NOD mice can be destroyed by adoptive transfer of splenocytes from wild-type NOD mice; however, the time to onset of hyperglycemia is delayed significantly, and 40% of these recipients were not diabetic at the end of the experiment. These findings suggest that expression of E3 genes in -cells affects both the activation of immune effector cells and the intrinsic resistance of -cells to autoimmune destruction. Diabetes 50:980 -984, 2001
Nonobese diabetic (NOD) mice and some human type 1 diabetes (T1D) patients manifest low to high levels of other autoimmune pathologies. Skewing their cytokine production from a Th1 (primarily IFN-γ) to a Th2 (primarily IL-4 and IL-10) pattern is a widely proposed approach to dampen the pathogenicity of autoreactive diabetogenic T cells. However, it is important that altered cytokine balances not enhance any other autoimmune proclivities to dangerous levels. Murine CD4 T cells are characterized by a reciprocal relationship between the production of IFN-γ and expression of the β-chain component of its receptor (IFN-γRB). Thus, NOD mice constitutively expressing a CD2 promoter-driven IFN-γRB transgene in all T cells are Th1-deficient. Unexpectedly, NOD.IFN-γRB Tg mice were found to develop a lethal early paralytic syndrome induced by a CD8 T cell-dependent autoimmune-mediated myositis. Furthermore, pancreatic insulitis levels were not diminished in 9-wk-old NOD.IFN-γRB Tg females, and overt T1D developed in the few that survived to an older age. Autoimmune-mediated myositis is only occasionally detected in standard NOD mice. Hence, some manipulations diminishing Th1 responses can bring to the forefront what are normally secondary autoimmune pathologies in NOD mice, while also failing to dependably abrogate pancreatic β cell destruction. This should raise a cautionary note when considering the use of protocols that induce alterations in cytokine balances as a means of blocking progression to overt T1D in at-risk humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.