Results. All the inflammatory factors analyzed were down-modulated at the messenger RNA or protein level independently by all 3 AD-MSC sources or by allogeneic AD-MSCs used in coculture with chondrocytes or synoviocytes. Inflammatory factor downmodulation was observed only when AD-MSCs were cocultured with chondrocytes or synoviocytes that produced high levels of inflammatory factors, but no effect was observed in cells that produced low levels of those factors, thus highlighting a dependence of the AD-MSC effect on existing inflammation. The immunomodulators IL-10, IL-1 receptor antagonist, fibroblast growth factor 2, indoleamine 2,3-dioxygenase 1, and galectin 1 were not involved in AD-MSC effects, whereas the cyclooxygenase 2 (COX-2)/prostaglandin E 2 (PGE 2 ) pathway exerted a role in the mechanism of antiinflammatory AD-MSC action.Conclusion. The antiinflammatory effects of ADMSCs are probably not dependent on AD-MSC adipose tissue sources and donors but rather on the inflammatory status of OA chondrocytes and synoviocytes. AD-MSCs seem to be able to sense and respond to the local environment. Even though a combination of different molecules may be involved in AD-MSC effects, the COX-2/PGE 2 pathway may play a role, suggesting that AD-MSCs may be useful for therapies in osteoarticular diseases.Osteoarthritis (OA) is a chronic age-related disease of the "whole joint" characterized by the slowly progressive destruction of articular cartilage accompanied by changes to synovium and subchondral bone, degeneration of ligaments and menisci, and hypertrophy of the joint capsule (1). In vivo and in vitro studies indicate that proinflammatory cytokines (interleukin-1 [IL-1], tumor necrosis factor ␣ [TNF␣], and IL-6) and chemokines (CXCL1/growth-related oncogene ␣ [GRO␣], CXCL8/IL-8, CCL2/monocyte chemotactic protein 1 , and CCL5/RANTES) produced by synoviocytes and chondrocytes, as well as cells from
Our work aimed at evaluating the role of adipose stem cells (ASC) on chondrocytes from osteoarthritic (OA) patients and identifying the mediators involved. We used primary chondrocytes, ASCs from different sources and bone marrow mesenchymal stromal cells (MSC) from OA donors. ASCs or MSCs were co-cultured with chondrocytes in a minimal medium and using cell culture inserts. Under these conditions, ASCs did not affect the proliferation of chondrocytes but significantly decreased camptothecin-induced apoptosis. Both MSCs and ASCs from different sources allowed chondrocytes in the cocultures maintaining a stable expression of markers specific for a mature phenotype, while expression of hypertrophic and fibrotic markers was decreased. A number of factors known to regulate the chondrocyte phenotype (IL-1β, IL-1RA, TNF-α) and matrix remodeling (TIMP-1 and -2, MMP-1 and -9, TSP-1) were not affected. However, a significant decrease of TGF-β1 secretion by chondrocytes and induction of HGF secretion by ASCs was observed. Addition of a neutralizing anti-HGF antibody reversed the anti-fibrotic effect of ASCs whereas hypertrophic markers were not modulated. In summary, ASCs are an interesting source of stem cells for efficiently reducing hypertrophy and dedifferentiation of chondrocytes, at least partly via the secretion of HGF. This supports the interest of using these cells in therapies for osteo-articular diseases.
BackgroundThe aim of the study was to characterize synovial cells from OA synovium with low-grade and moderate-grade synovitis and to define the role of synovial macrophages in cell culture.MethodsSynovial tissue explants were analyzed for the expression of typical markers of synovial fibroblasts (SF), synovial macrophages (SM) and endothelial cells. Synovial cells at passage 1 (p.1) and 5 (p.5) were analyzed for different phenotypical markers by flow cytometric analysis, inflammatory factors by multiplex immunoassay, anabolic and degradative factors by qRT-PCR. P.1 and p.5 synovial cells as different cell models were co-cultured with adipose stem cells (ASC) to define SM effects.ResultsSynovial tissue showed a higher percentage of CD68 marker in moderate compared with low-grade synovitis. Isolated synovial cells at p.1 were positive to typical markers of SM (CD14, CD16, CD68, CD80 and CD163) and SF (CD55, CD73, CD90, CD105, CD106), whereas p.5 synovial cells were positive only to SF markers and showed a higher percentage of CD55 and CD106. At p.1 synovial cells released a significantly higher amount of all inflammatory (IL6, CXCL8, CCL2, CCL3, CCL5) and some anabolic (IL10) factors than those of p.5. Moreover, p.1 synovial cells also expressed a higher amount of some degradative factors (MMP13, S100A8, S100A9) than p.5 synovial cells. Co-culture experiments showed that the amount of SM in p.1 synovial cells differently induced or down-modulated some of the inflammatory (IL6, CXCL8, CCL2, CCL3, CCL5) and degradative factors (ADAMTS5, MMP13, S100A8, S100A9).ConclusionsWe found that p.1 (mix of SM and SF) and p.5 (only SF) synovial cells represent two cell models that effectively reproduce the low- or moderate-grade synovitis environment. The presence of SM in culture specifically induces the modulation of the different factors analyzed, confirming that SM are key effector cells.Electronic supplementary materialThe online version of this article (doi:10.1186/s13075-016-0983-4) contains supplementary material, which is available to authorized users.
We demonstrated that ASC are responsible for the switching of activated-M1-like inflammatory macrophages to a M2-like phenotype, mainly through PGE2. This evidenced that activated-M1-like macrophages may represent a relevant cell model to test the efficacy/potency of ASC and suggests a specific role of ASC as important determinants in therapeutic dampening of synovial inflammation in OA.
Bone marrow and adipose tissue human mesenchymal stem cells were seeded in highly performing 3D gelatin–chitosan hybrid hydrogels of varying chitosan content in the presence of human platelet lysate and evaluated for their proliferation and osteogenic differentiation. Both bone marrow and adipose tissue human mesenchymal stem cells in gelatin–chitosan hybrid hydrogel 1 (chitosan content 8.1%) or gelatin–chitosan hybrid hydrogel 2 (chitosan 14.9%) showed high levels of viability (80%–90%), and their proliferation and osteogenic differentiation was significantly higher with human platelet lysate compared to fetal bovine serum, particularly in gelatin–chitosan hybrid hydrogel 1. Mineralization was detected early, after 21 days of culture, when human platelet lysate was used in the presence of osteogenic stimuli. Proteomic characterization of human platelet lysate highlighted 59 proteins mainly involved in functions related to cell adhesion, cellular repairing mechanisms, and regulation of cell differentiation. In conclusion, the combination of our gelatin–chitosan hybrid hydrogels with hPL represents a promising strategy for bone regenerative medicine using human mesenchymal stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.