A high temperature thermosetting bisphenol-A dicyanate (BADCy) was modified with polyetherimide (PEI) at various compositions. The effects of the morphology of the blends on the fracture toughness and mechanical properties were investigated. For this purpose, fracture, flexural, and compression tests were carried out. The fracture surfaces of the broken specimens were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The morphology was controlled by changing the curing conditions and PEI content. A good correlation between fracture properties and microstructural features of the mixtures has been observed. The phaseinverted morphologies showed the highest fracture toughness, which was further increased by increasing the cure temperature. The mechanical properties of the matrix (modulus, yield strength) were not affected by the addition of the thermoplastic. Fracture energy values show similar trends for the different mechanical tests performed.
The phase-separation behavior and morphology of polycarbonate-based polyurethanes were investigated as a function of the soft-segment molecular weight and chemical structure and the 4,4 0 -diphenylmethane diisocyanate/1,4-butanediol based hard-segment contents. Polarized optical microscopy and atomic force microscopy images showed that the surface morphologies changed as the soft-segment molecular weight and hard-segment content varied and also when the sample preparation conditions were modified. An increase in the soft-and hardsegment lengths led to increased phase separation with respect to the lower molecular weight soft segment, and this showed an interlocked and connected morphology of intermixed soft and hard domains. The surface morphology of phase-separated polyurethanes with hard segments composed of more than four to five 4,4 0 -diphenylmethane diisocyanate units contained globular hard-segment domains formed by spherulites, in which the size and connectivity between the branched lamellae changed with the hard-segment size. Interlamellar areas related to the soft segment were seen in the spherulites. Variations in the hard-segment spherulites were observed for polyurethanes based on soft segments of different molecular weights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.