Genotoxic chemotherapy is the most common cancer treatment strategy. However, its untargeted generic DNA-damaging nature and associated systemic cytotoxicity greatly limit the therapeutic applications. Here, we employed a haploid genetic screen in human cells to discover an absolute dependency of the clinically evaluated anti-cancer compound YM155 on SLC35F2, an uncharacterized member of the solute carrier protein family that is highly expressed in a variety of human cancers. YM155 generated DNA damage through intercalation, which was contingent on the expression of SLC35F2 and its drug importing activity. SLC35F2 expression and YM155 sensitivity correlated across a panel of cancer cell lines and targeted genome editing verified SLC35F2 as the main determinant of YM155-mediated DNA damage toxicity in vitro and in vivo.These findings suggest a novel route to targeted DNA damage by exploiting tumor and patientspecific import of YM155.
One recurring theme in drug development is to exploit synthetic lethal properties as means to preferentially damage the DNA of cancer cells. We and others have previously developed inhibitors of the ATR kinase, shown to be particularly genotoxic for cells expressing certain oncogenes. In contrast, the mechanisms of resistance to ATR inhibitors remain unexplored. We report here on a genome-wide CRISPR-Cas9 screen that identified CDC25A as a major determinant of sensitivity to ATR inhibition. CDC25A-deficient cells resist high doses of ATR inhibitors, which we show is due to their failure to prematurely enter mitosis in response to the drugs. Forcing mitotic entry with WEE1 inhibitors restores the toxicity of ATR inhibitors in CDC25A-deficient cells. With ATR inhibitors now entering the clinic, our work provides a better understanding of the mechanisms by which these compounds kill cells and reveals genetic interactions that could be used for their rational use.
The recent development of haploid cell lines has facilitated forward genetic screenings in mammalian cells. These lines include nearhaploid human cell lines isolated from a patient with chronic myelogenous leukemia (KBM7 and HAP1), as well as haploid embryonic stem cells derived from several organisms. In all cases, haploidy was shown to be an unstable state, so that cultures of mammalian haploid cells rapidly become enriched in diploids. Here we show that the observed diploidization is due to a proliferative disadvantage of haploid cells compared with diploid cells. Accordingly, single-cell-sorted haploid mammalian cells maintain the haploid state for prolonged periods, owing to the absence of competing diploids. Although the duration of interphase is similar in haploid and diploid cells, haploid cells spend longer in mitosis, indicative of problems in chromosome segregation. In agreement with this, a substantial proportion of the haploids die at or shortly after the last mitosis through activation of a p53-dependent cytotoxic response. Finally, we show that p53 deletion stabilizes haploidy in human HAP1 cells and haploid mouse embryonic stem cells. We propose that, similar to aneuploidy or tetraploidy, haploidy triggers a p53-dependent response that limits the fitness of mammalian cells.haploidy | embryonic stem cells | p53 | HAP1 | chromosome segregation T he main advantage of yeast as a model organism for genetic studies is the availability of haploid cells, so that the mutation of a single allele can suffice to reveal a phenotype. This approach has been of enormous importance for biomedical research in recent decades, as exemplified by the number of Nobel Prizes awarded to discoveries that used yeast as a model system, including the discovery of autophagy, telomeres, and the cell cycle (1). In any case, there are questions intrinsic to mammalian biology, such as stemness or differentiation, that are difficult to address using yeast as a model, and that could be answered by the availability of mammalian haploid cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.