Benzothiazepine CGP37157 is widely used as tool to explore the role of mitochondria in cell Ca 2+ handling, by its blocking effect of the mitochondria Na + /Ca 2+ exchanger. Recently, CGP37157 has shown to exhibit neuroprotective properties. In the trend to improve its neuroprotection profile, we have synthesized ITH12505, an isosteric analogue having a methyl instead of chlorine at C2′ of the phenyl ring. ITH12505 has exerted neuroprotective properties similar to CGP37157 in chromaffin cells and hippocampal slices stressed with veratridine. Also, both compounds afforded neuroprotection in hippocampal slices stressed with glutamate. However, while ITH12505 elicited protection in SH-SY5Y cells stressed with oligomycin A/rotenone, CGP37157 was ineffective. In hippocampal slices subjected to oxygen/glucose deprivation plus reoxygenation, ITH12505 offered protection at 3−30 μM, while CGP37157 only protected at 30 μM. Both compounds caused blockade of Ca 2+ channels in high K + -depolarized SH-SY5Y cells. An in vitro experiment for assaying central nervous system penetration (PAMPA-BBB; parallel artificial membrane permeability assay for blood-brain barrier) revealed that both compounds could cross the blood−brain barrier, thus reaching their biological targets in the central nervous system. In conclusion, by causing a mild isosteric replacement in the benzothiazepine CGP37157, we have obtained ITH12505, with improved neuroprotective properties. These findings may inspire the design and synthesis of new benzothiazepines targeting mitochondrial Na + /Ca 2+ exchanger and L-type voltage-dependent Ca 2+ channels, having antioxidant properties.
Gluten-free bread production requires gluten-free flours or starches. Rice flour and maize starch are two of the most commonly used raw materials. Over recent years, gluten-free wheat starch is available on the market. The aim of this research was to optimize mixtures of rice flour, maize starch and wheat starch using an experimental mixture design. For this purpose, dough rheology and its fermentation behaviour were studied. Quality bread parameters such as specific volume, texture, cell structure, colour and acceptability were also analysed. Generally, starch incorporation reduced G* and increased the bread specific volume and cell density, but the breads obtained were paler than the rice flour breads. Comparing the starches, wheat starch breads had better overall acceptability and had a greater volume than maize-starch bread. The highest value for sensorial acceptability corresponded to the bread produced with a mixture of rice flour (59 g/100 g) and wheat starch (41 g/100 g).
This study showed that the type and quantity of fat added in rice based breads affect the bread quality in a different way. In general, it can be said that the incorporation of up to 20% oil improved rice based breads. Oil increased the specific volume, the a* and b* parameters of the crust and the cell density. It also decreases hardness, cohesiveness, springiness, resilience, and the L* parameter. Converse to breads made with oil, the addition of shortening can negatively affect the quality of the breads. Moreover, the correlation analysis has demonstrated that the study of dough rheology could be a good predictor of gluten-free bread quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.