Remote sensing has been recognized as the main technique to extract land cover/land use (LC/LU) data, required to address many environmental issues. Therefore, over the years, many approaches have been introduced and explored to optimize the resultant classification maps. Particularly, index-based methods have highlighted its efficiency and effectiveness in detecting LC/LU in a multitemporal and multisensors analysis perspective. Nevertheless, the developed indices are suitable to extract a specific class but not to completely classify the whole area. In this study, a new Landsat Images Classification Algorithm (LICA) is proposed to automatically detect land cover (LC) information using satellite open data provided by different Landsat missions in order to perform a multitemporal and multisensors analysis. All the steps of the proposed method were implemented within Google Earth Engine (GEE) to automatize the procedure, manage geospatial big data, and quickly extract land cover information. The algorithm was tested on the experimental site of Siponto, a historic municipality located in Apulia Region (Southern Italy) using 12 radiometrically and atmospherically corrected satellite images collected from Landsat archive (four images, one for each season, were selected from Landsat 5, 7, and 8, respectively). Those images were initially used to assess the performance of 82 traditional spectral indices. Since their classification accuracy and the number of identified LC categories were not satisfying, an analysis of the different spectral signatures existing in the study area was also performed, generating a new algorithm based on the sequential application of two new indices (SwirTirRed (STRed) index and SwiRed index). The former was based on the integration of shortwave infrared (SWIR), thermal infrared (TIR), and red bands, whereas the latter featured a combination of SWIR and red bands. The performance of LICA was preferable to those of conventional indices both in terms of accuracy and extracted classes number (water, dense and sparse vegetation, mining areas, built-up areas versus water, and dense and sparse vegetation). GEE platform allowed us to go beyond desktop system limitations, reducing acquisition and processing times for geospatial big data.
The Italian coastline stretches over about 8350 km, with 3600 km of beaches, representing a significant resource for the country. Natural processes and anthropic interventions keep threatening its morphology, moulding its shape and triggering soil erosion phenomena. Thus, many scholars have been focusing their work on investigating and monitoring shoreline instability. Outcomes of such activities can be largely widespread and shared with expert and non-expert users through Web mapping. This paper describes the performances of a WebGIS prototype designed to disseminate the results of the Italian project Innovative Strategies for the Monitoring and Analysis of Erosion Risk, known as the STIMARE project. While aiming to include the entire national coastline, three study areas along the regional coasts of Puglia and Emilia Romagna have already been implemented as pilot cases. This WebGIS was generated using Free and Open-Source Software for Geographic information systems (FOSS4G). The platform was designed by combining Apache http server, Geoserver, as open-source server and PostgreSQL (with PostGIS extension) as database. Pure javascript libraries OpenLayers and Cesium were implemented to obtain a hybrid 2D and 3D visualization. A user-friendly interactive interface was programmed to help users visualize and download geospatial data in several formats (pdf, kml and shp), in accordance with the European INSPIRE directives, satisfying both multi-temporal and multi-scale perspectives.
Land Use/Land Cover (LU/LC) data includes most of the information suitable for tackling many environmental issues. Remote sensing is largely recognized as the most significant method to extract them through the application of various techniques. They can be extracted through the application of many techniques. Among the several classification approaches, the index-based method has been recognized as the best one to gather LU/LC information from different images sources. The present work is intended to assess its performance exploiting the great potentialities of Google Earth Engine (GEE), a cloud-processing environment introduced by Google to storage and handle a large number of information. Twelve atmospherically corrected Landsat satellite images were collected on the experimental site of Siponto, in Southern Italy. Once the clouds masking procedure was completed, a large number of indices were implemented and compared in GEE platform to detect sparse and dense vegetation, water, bare soils and built-up areas. Among the tested algorithms, only NDBaI2, CVI, WI2015, SwiRed and STRed indices showed satisfying performance. Although NDBaI2 was able to extract all the main LU/LC categories with a high Overall Accuracy (OA) (82.59%), the other mentioned indices presented a higher accuracy than the first one but are able to identify just few classes. An interesting performance is shown by the STRed index since it has a very high OA and can extract mining areas, water and green zones. GEE appeared the best solution to manage the geospatial big data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.