Artículo de publicación ISISoils are an important site of carbon storage(1). Climate is generally regarded as one of the primary controls over soil organic carbon(1,2), but there is still uncertainty about the direction and magnitude of carbon responses to climate change. Here we show that geochemistry, too, is an important controlling factor for soil carbon storage. We measured a range of soil and climate variables at 24 sites along a 4,000-km-long north-south transect of natural grassland and shrubland in Chile and the Antarctic Peninsula, which spans a broad range of climatic and geochemical conditions. We find that soils with high carbon content are characterized by substantial adsorption of carbon compounds onto mineral soil and low rates of respiration per unit of soil carbon; and vice versa for soils with low carbon content. Precipitation and temperature were only secondary predictors for carbon storage, respiration, residence time and stabilization mechanisms. Correlations between climatic variables and carbon variables decreased significantly after removing relationships with geochemical predictors. We conclude that the interactions of climatic and geochemical factors control soil organic carbon storage and turnover, and must be considered for robust prediction of current and future soil carbon storage.BELSPO IUAP project 'SOGLO- Soils under Global change' (Belgium); FONDECYT
In agricultural activities, the main greenhouse gases (GHG) are those related to C and N global cycles. The impact of agriculture on GHG emissions has become a key issue, especially when considering that natural C and N cycles are influenced by agricultural development. This review focuses on CO2 and N2O soil emissions in terrestrial ecosystems, with emphasis in Chilean and similar agro-ecosystems around the world. The influence of land use and crop management practices on CO2 and N2O emissions is analyzed and some mitigation measures to reduce such emissions are also discussed here. More knowledge on the biological processes that promote of GHG emissions from soil will allow creating opportunities for agricultural development under friendly-environmental conditions, where soil can act as a reservoir and/or emitter of GHG, depending on the balance of inputs and outputs.
The objective of this study was to evaluate the individual and synergic effects of the application of Biochar (B), Humic Substances (HS), and Gypsum (G) on the soil properties of a saline–sodic soil, and plant growth and seed quality (polyphenols, protein and yield) of quinoa. Treatments included (B) 22 t ha−1, (HS) 5 kg ha−1, and (G) 47.7 t ha−1. Two quinoa genotypes from Arid Zones (AZ-51 and AZ-103) were selected and established in eight treatments. The B + HS + G combined treatment resulted in increases in root biomass of 206% and 176% in AZ-51 and AZ-103, respectively. Furthermore, electrical conductivity (ECe), sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP) decreased significantly in all treated soils. When compared to the control, ESP decreased 11-fold in the G treatment, and 9–13-fold in the B + G; B + HS; and B + HS + G treatments. Similarly, soil microbial biomass increased 112% and 322% in the B + HS + G treatment in AZ-51 and AZ-103 genotypes, respectively. Therefore, it can be concluded that the application of combined amendments (B + HS + G) represents an alternative for reclaiming degraded soils, including saline–sodic soils.
The 'Espinal' agroforestry system of the Mediterranean zone of central Chile, which covers an area of 2000 000 ha, is in various stages of degradation due to human activities. The objective of our study was: (i) to determine the effects of the canopy cover of Acacia caven ('Espino') on total soil organic carbon (SOC), soil respiration and the labile components of soil organic matter (microbial biomass, and light fraction); and (ii) to determine the influence of ecosystem degradation on total and labile components of SOC. Soils of the study area are classified as fine, mixed, active, mesic Ultic Palexeralfs, typical of the Mediterranean-type environment. We investigated sites according to the percentage coverage of A. caven canopy: (i) well-preserved Espinal (WPE), 80-51% cover; (ii) good Espinal (GE), 50-26% cover; (iii) degraded Espinal (DE), 25-11% cover; and (iv) very degraded Espinal (VDE), < 10% cover. In addition, a site under native forest (NF) was included to characterize the original state of the zone. Soil samples were taken under and outside the canopy of A. caven at two depths, 0-5 and 5-10 cm. We conclude that the microbial biomass carbon (C mic ), and total and labile components of SOC are influenced by the presence of the A. caven tree, with greater values under than outside its canopy. Under the tree canopy, to a depth of 10 cm, C mic was less under all the agroforestry systems than in NF (46 and 30% less for WPE and GE, respectively, and 67 and 57% less for DE and VDE). However, there was no clear trend for less C mic with increased ecosystem degradation, especially outside the canopy. However, the respiration of microbial communities was affected by ecosystem degradation for both soil depths under the tree canopy, e.g. soil respiration in VDE ecosystems was about 50% greater than that found in WPE ecosystems. Increasing the coverage of the A. caven tree in the semiarid ecosystems of central Chile, e.g. changing from VDE to WPE, would result in an eventual, long-term (over several centuries) increase in soil organic C of approximately 50%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.