The biguanide metformin, a widely used drug for the treatment of type 2 diabetes, may exert cancer chemopreventive effects by suppressing the transformative and hyperproliferative processes that initiate carcinogenesis. Metformin's molecular targets in cancer cells (e.g., mTOR, HER2) are similar to those currently being used for directed cancer therapy. However, metformin is nontoxic and might be extremely useful for enhancing treatment efficacy of mechanism-based and biologically targeted drugs. Here, we first revisit the epidemiological, preclinical, and clinical evidence from the last 5 years showing that metformin is a promising candidate for oncology therapeutics. Second, the anticancer effects of metformin by both direct (insulin-independent) and indirect (insulin-dependent) mechanisms are discussed in terms of metformin-targeted processes and the ontogenesis of cancer stem cells (CSC), including Epithelial-to-Mesenchymal Transition (EMT) and microRNAs-regulated dedifferentiation of CSCs. Finally, we present preliminary evidence that metformin may regulate cellular senescence, an innate safeguard against cellular immortalization. There are two main lines of evidence that suggest that metformin's primary target is the immortalizing step during tumorigenesis. First, metformin activates intracellular DNA damage response checkpoints. Second, metformin attenuates the anti-senescence effects of the ATP-generating glycolytic metabotype-the Warburg effect-, which is required for self-renewal and proliferation of CSCs. If metformin therapy presents an intrinsic barrier against tumorigenesis by lowering the threshold for stress-induced senescence, metformin therapeutic strategies may be pivotal for therapeutic intervention for cancer. Current and future clinical trials will elucidate whether metformin has the potential to be used in preventive and treatment settings as an adjuvant to current cancer therapeutics.
Autophagy has been emerging as a novel cytoprotective mechanism to increase tumor cell survival under conditions of metabolic stress and hypoxia as well as to escape chemotherapy-induced cell death. To elucidate whether autophagy might also protect cancer cells from the growth inhibitory effects of targeted therapies, we evaluated the autophagic status of preclinical breast cancer models exhibiting auto-acquired resistance to the anti-HER2 monoclonal antibody trastuzumab (Tzb). We first examined the basal autophagic levels in Tzb-naive SKBR3 cells and in two pools of Tzb-conditioned SKBR3 cells (TzbR), which optimally grow in the presence of Tzb doses as high as 200 µg/ml Tzb. Fluorescence microscopic analyses revealed that the number of punctate LC3 structures -a hallmark of autophagy- was drastically higher in Tzb-refractory cells than in Tzb-sensitive SKBR3 parental cells. Immunoblotting analyses confirmed that the lipidation product of the autophagic conversion of LC3 was accumulated to high levels in TzbR cells. High levels of the LC3 lipidated form in Tzb-refractory cells were accompanied by decreased p62/sequestosome-1 protein expression, a phenomenon characterizing the occurrence of increased autophagic flux. Moreover, increased autophagy was actively used to survive Tzb therapy as TzbR pools were exquisitely sensitive to chemical inhibitors of autophagosomal formation/function. Knockdown of LC3 expression via siRNA similarly resulted in reduced TzbR cell proliferation and supra-additively interacted with Tzb to re-sensitize TzbR cells. Sub-groups of Tzb-naive SKBR3 parental cells accumulated LC3 punctate structures and decreased p62 expression after treatment with high-dose Tzb, likely promoting their own resistance. This is the first report showing that HER2-overexpressing breast cancer cells chronically exposed to Tzb exhibit a bona fide up-regulation of the autophagic activity that efficiently works to protect breast cancer cells from the growth-inhibitory effects of Tzb. Therapeutic targeting autophagosome formation/function might represent a novel molecular avenue to reduce the emergence of Tzb resistance in HER2-dependent breast carcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.