The GTPases Rac and Cdc42 play a pivotal role in the establishment of cell polarity by stimulating biogenesis of tight junctions (TJs). In this study, we show that the Rac-specific guanine nucleotide exchange factor Tiam1 (T-lymphoma invasion and metastasis) controls the cell polarity of epidermal keratinocytes. Similar to wild-type (WT) keratinocytes, Tiam1-deficient cells establish primordial E-cadherin–based adhesions, but subsequent junction maturation and membrane sealing are severely impaired. Tiam1 and V12Rac1 can rescue the TJ maturation defect in Tiam1-deficient cells, indicating that this defect is the result of impaired Tiam1–Rac signaling. Tiam1 interacts with Par3 and aPKCζ, which are two components of the conserved Par3–Par6–aPKC polarity complex, and triggers biogenesis of the TJ through the activation of Rac and aPKCζ, which is independent of Cdc42. Rac is activated upon the formation of primordial adhesions (PAs) in WT but not in Tiam1-deficient cells. Our data indicate that Tiam1-mediated activation of Rac in PAs controls TJ biogenesis and polarity in epithelial cells by association with and activation of the Par3–Par6–aPKC polarity complex.
Tissue engineering of large bone defects is approached through implantation of autologous osteogenic cells, generally referred to as multipotent stromal cells or mesenchymal stem cells (MSCs). Animal-derived MSCs successfully bridge large bone defects, but models for ectopic bone formation as well as recent clinical trials demonstrate that bone formation by human MSCs (hMSCs) is inadequate. The expansion phase presents an attractive window to direct hMSCs by pharmacological manipulation, even though no profound effect on bone formation in vivo has been described so far using this approach. We report that activation of protein kinase A elicits an immediate response through induction of genes such as ID2 and FosB, followed by sustained secretion of bone-related cytokines such as BMP-2, IGF-1, and IL-11. As a consequence, PKA activation results in robust in vivo bone formation by hMSCs derived from orthopedic patients.bone tissue engineering ͉ osteogenesis ͉ PKA signaling
Variability in the performance of nucleic acid amplification technology (NAT)-based assays presents a significant problem in the diagnosis and management of human cytomegalovirus (HCMV) infections. Here we describe a collaborative study to evaluate the suitability of candidate reference materials to harmonize HCMV viral load measurements in a wide range of NAT assays. Candidate materials comprised lyophilized Merlin virus, liquid Merlin virus, liquid AD169 virus, and purified HCMV Merlin DNA cloned into a bacterial artificial chromosome. Variability in the laboratory mean HCMV concentrations determined for virus samples across the different assays was 2 log10. Variability for the purified DNA sample was higher (>3 log10). The agreement between laboratories was markedly improved when the potencies of the liquid virus samples were expressed relative to the lyophilized virus candidate. In contrast, the agreement between laboratories for the purified DNA sample was not improved. Results indicated the suitability of the lyophilized Merlin virus preparation as the 1st WHO International Standard for HCMV for NAT. It was established in October 2010, with an assigned potency of 5 × 10(6) International Units (IU) (NIBSC code 09/162). It is intended to be used to calibrate secondary references, used in HCMV NAT assays, in IU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.