Background: Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited. Objective: To systematically review safety related aspects of TFUS. The review covers the mechanisms-ofaction by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies. Methods: Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals. Results: Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits. Conclusion: Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Background: Low-intensity transcranial focused ultrasound stimulation is a promising candidate for noninvasive brain stimulation and accurate targeting of brain circuits because of its focusing capability and long penetration depth. However, achieving a sufficiently high spatial resolution to target small animal sub-regions is still challenging, especially in the axial direction. Objective: To achieve high axial resolution, we designed a dual-crossed transducer system that achieved high spatial resolution in the axial direction without complex microfabrication, beamforming circuitry, and signal processing. Methods: High axial resolution was achieved by crossing two ultrasound beams of commercially available piezoelectric curved transducers at the focal length of each transducer. After implementation of the fixture for the dual-crossed transducer system, three sets of in vivo animal experiments were conducted to demonstrate high target specificity of ultrasound neuromodulation using the dual-crossed transducer system (n ¼ 38). Results: The full-width at half maximum (FWHM) focal volume of our dual-crossed transducer system was under 0.52 mm 3 . We report a focal diameter in both lateral and axial directions of 1 mm. To demonstrate successful in vivo brain stimulation of wild-type mice, we observed the movement of the forepaws. In addition, we targeted the habenula and verified the high spatial specificity of our dualcrossed transducer system. Conclusions: Our results demonstrate the ability of the dual-crossed transducer system to target highly specific regions of mice brains using ultrasound stimulation. The proposed system is a valuable tool to study the complex neurological circuitry of the brain noninvasively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.