Many endocytosed proteins in yeast travel to the vacuole, but some are recycled to the plasma membrane. We have investigated the recycling of chimeras containing green fluorescent protein (GFP) and the exocytic SNARE Snc1p. GFP-Snc1p moves from the cell surface to internal structures when Golgi function or exocytosis is blocked, suggesting continuous recycling via the Golgi. Internalization is mediated by a conserved cytoplasmic signal, whereas diversion from the vacuolar pathway requires sequences within and adjacent to the transmembrane domain. Delivery from the Golgi to the surface is also influenced by the transmembrane domain, but the requirements are much less specific. Recycling requires the syntaxins Tlg1p and Tlg2p but not Pep12p or proteins such as Vps4p and Vps5p that have been implicated in late endosome–Golgi traffic. Subtle changes to the recycling signal cause GFP-Snc1p to accumulate preferentially in punctate internal structures, although it continues to recycle to the surface. The internal GFP-Snc1p colocalizes with Tlg1p, and immunofluorescence and immunoelectron microscopy reveal structures that contain Tlg1p, Tlg2p, and Kex2p but lack Pep12p and Sec7p. We propose that these represent early endosomes in which sorting of Snc1p and late Golgi proteins occurs, and that transport can occur directly from them to the Golgi apparatus.
Pathogenic mycobacteria resist lysosomal delivery after uptake into macrophages, allowing them to survive intracellularly. We found that the eukaryotic-like serine/threonine protein kinase G from pathogenic mycobacteria was secreted within macrophage phagosomes, inhibiting phagosome-lysosome fusion and mediating intracellular survival of mycobacteria. Inactivation of protein kinase G by gene disruption or chemical inhibition resulted in lysosomal localization and mycobacterial cell death in infected macrophages. Besides identifying a target for the control of mycobacterial infections, these findings suggest that pathogenic mycobacteria have evolved eukaryotic-like signal transduction mechanisms capable of modulating host cell trafficking pathways.
The target of rapamycin (TOR) is a highly conserved protein kinase and a central controller of growth. Mammalian TOR complex 2 (mTORC2) regulates AGC kinase family members and is implicated in various disorders, including cancer and diabetes. Here we report that mTORC2 is localized to the endoplasmic reticulum (ER) subcompartment termed mitochondria-associated ER membrane (MAM). mTORC2 localization to MAM was growth factor-stimulated, and mTORC2 at MAM interacted with the IP 3 receptor (IP3R)-Grp75-voltage-dependent anion-selective channel 1 ER-mitochondrial tethering complex. mTORC2 deficiency disrupted MAM, causing mitochondrial defects including increases in mitochondrial membrane potential, ATP production, and calcium uptake. mTORC2 controlled MAM integrity and mitochondrial function via Akt mediated phosphorylation of the MAM associated proteins IP3R, Hexokinase 2, and phosphofurin acidic cluster sorting protein 2. Thus, mTORC2 is at the core of a MAM signaling hub that controls growth and metabolism.
The Ser-Thr kinase mammalian target of rapamycin (mTOR) controls cell growth and metabolism by stimulating glycolysis and synthesis of proteins and lipids. To further understand the central role of mTOR in cell physiology, we used quantitative phosphoproteomics to identify substrates or downstream effectors of the two mTOR complexes. mTOR controlled the phosphorylation of 335 proteins, including CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase). CAD catalyzes the first three steps in de novo pyrimidine synthesis. mTORC1 indirectly phosphorylated CAD-S1859 through S6 kinase (S6K). CAD-S1859 phosphorylation promoted CAD oligomerization and thereby stimulated de novo synthesis of pyrimidines and progression through S phase of the cell cycle in mammalian cells. Thus, mTORC1 also stimulates the synthesis of nucleotides to control cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.