Objectives
To investigate the incidence of chromosomal abnormalities in the products of conception (POC) of patients with spontaneous miscarriages (SM) and with recurrent pregnancy losses (RPL) and to determine biological mechanisms contributing to RPL.
Methods
During a 20‐year period, 12 096 POC samples underwent classical chromosome analysis. Cytogenetic findings were compared between the SM and RPL cohorts.
Results
Analysis of RPL cohort has identified an increased incidence of inherited and de novo structural chromosome abnormalities, recurrent polyploid conceptions, and complex mosaic alterations. These abnormalities are the signature of genomic instability, posing a high risk of genetic abnormalities to offspring independent of maternal age. Predominance of male conceptions in the RPL cohort points toward an X‐linked etiology and gender‐specific intolerance for certain genetic abnormalities.
Conclusions
Our study showed several possible genetic etiologies of RPL, including parental structural chromosome rearrangements, predisposition to meiotic nondisjunction, and genomic instability. Loss of karyotypically normal fetuses might be attributed to defects in genes essential for fetal development, as well as aberrations affecting the X chromosome. Molecular studies of parental and POC genomes will help to identify inherited defects in genes involved in meiotic divisions and DNA repair to confirm our hypotheses, and to discover novel fetal‐essential genes.
The 26S proteasome is a multi-subunit protein complex that is canonically known for its ability to degrade proteins in cells and maintain protein homeostasis. Non-canonical or non-proteolytic roles of proteasomal subunits exist but remain less well studied. We provide characterization of germline-specific functions of different 19S proteasome regulatory particle (RP) subunits in C. elegans using RNAi specifically from the L4 stage and through generation of endogenously tagged 19S RP lid subunit strains. We show functions for the 19S RP in regulation of proliferation and maintenance of integrity of mitotic zone nuclei, in polymerization of the synaptonemal complex (SC) onto meiotic chromosomes and in the timing of SC subunit redistribution to the short arm of the bivalent, and in turnover of XND-1 proteins at late pachytene. Furthermore, we report that certain 19S RP subunits are required for proper germ line localization of WEE-1.3, a major meiotic kinase. Additionally, endogenous fluorescent labeling revealed that the two isoforms of the essential 19S RP proteasome subunit RPN-6.1 are expressed in a tissue-specific manner in the hermaphrodite. Also, we demonstrate that the 19S RP subunits RPN-6.1 and RPN-7 are crucial for the nuclear localization of the lid subunits RPN-8 and RPN-9 in oocytes, further supporting the ability to utilize the C. elegans germ line as a model to study proteasome assembly real-time. Collectively, our data support the premise that certain 19S RP proteasome subunits are playing tissue-specific roles, especially in the germ line. We propose C. elegans as a versatile multicellular model to study the diverse proteolytic and non-proteolytic roles that proteasome subunits play in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.