SummaryA widely shared view reads that mesenchymal stem/stromal cells (“MSCs”) are ubiquitous in human connective tissues, can be defined by a common in vitro phenotype, share a skeletogenic potential as assessed by in vitro differentiation assays, and coincide with ubiquitous pericytes. Using stringent in vivo differentiation assays and transcriptome analysis, we show that human cell populations from different anatomical sources, regarded as “MSCs” based on these criteria and assumptions, actually differ widely in their transcriptomic signature and in vivo differentiation potential. In contrast, they share the capacity to guide the assembly of functional microvessels in vivo, regardless of their anatomical source, or in situ identity as perivascular or circulating cells. This analysis reveals that muscle pericytes, which are not spontaneously osteochondrogenic as previously claimed, may indeed coincide with an ectopic perivascular subset of committed myogenic cells similar to satellite cells. Cord blood-derived stromal cells, on the other hand, display the unique capacity to form cartilage in vivo spontaneously, in addition to an assayable osteogenic capacity. These data suggest the need to revise current misconceptions on the origin and function of so-called “MSCs,” with important applicative implications. The data also support the view that rather than a uniform class of “MSCs,” different mesoderm derivatives include distinct classes of tissue-specific committed progenitors, possibly of different developmental origin.
Human bone marrow stromal cells (BMSCs, also known as bone marrow-derived "mesenchymal stem cells") can establish the hematopoietic microenvironment within heterotopic ossicles generated by transplantation at non-skeletal sites. Here we show that non-mineralized cartilage pellets formed by hBMSCs ex vivo generate complete ossicles upon heterotopic transplantation in the absence of exogenous scaffolds. These ossicles display a remarkable degree of architectural fidelity, showing that an exogenous conductive scaffold is not an absolute requirement for bone formation by transplanted BMSCs. Marrow cavities within the ossicles include erythroid, myeloid and granulopoietic lineages, clonogenic hematopoietic progenitors and phenotypic HSCs, indicating that complete stem cell niches and hematopoiesis are established. hBMSCs (CD146(+) adventitial reticular cells) are established in the heterotopic chimeric bone marrow through a unique process of endochondral bone marrow formation, distinct from physiological endochondral bone formation. In this process, chondrocytes remain viable and proliferate within the pellet, are released from cartilage, and convert into bone marrow stromal cells. Once explanted in secondary culture, these cells retain phenotype and properties of skeletal stem cells ("MSCs"), including the ability to form secondary cartilage pellets and secondary ossicles upon serial transplantation. Ex vivo, hBMSCs initially induced to form cartilage pellets can be reestablished in adherent culture and can modulate gene expression between cartilage and stromal cell phenotypes. These data show that so-called "cartilage differentiation" of BMSCs in vitro is a reversible phenomenon, which is actually reverted, in vivo, to the effect of generating stromal cells supporting the homing of hematopoietic stem cells and progenitors.
Human skeletal progenitors were engineered to stably express R201C mutated, constitutively active Gsα using lentiviral vectors. Long-term transduced skeletal progenitors were characterized by an enhanced production of cAMP, indicating the transfer of the fundamental cellular phenotype caused by activating mutations of Gsα. Like skeletal progenitors isolated from natural FD lesions, transduced cells could generate bone, but not adipocytes or the hematopoietic microenvironment, upon in vivo transplantation. In vitro osteogenic differentiation was noted for the lack of mineral deposition, a blunted up-regulation of osteocalcin, but with enhanced up-regulation of other osteogenic markers, such as ALP and BSP compared to controls. A very potent up-regulation of RANKL expression was observed, which correlates with the pronounced osteoclastogenesis observed in FD lesions in vivo. Stable transduction resulted in a marked up-regulation of selected phosphodiesterase (PDE) isoform mRNAs, and in a prominent increase in total PDE activity. This predicts an adaptive response in skeletal progenitors transduced with constitutively active, mutated Gsα. Indeed, like measurable cAMP levels, the differentiative responses of transduced skeletal progenitors were profoundly affected by inhibition of PDEs, or lack thereof. Finally, using lentiviral vectors encoding short hairpin (sh) RNA interfering sequences, we demonstrated that selective silencing of the mutated allele is both feasible and effective in reverting the aberrant cAMP production brought about by the constitutively active Gsα, and some of its effects on in vitro differentiation of skeletal progenitors.
Fibrous dysplasia of bone (FD) is a crippling skeletal disease associated with post zygotic mutations (R201C, R201H) of the gene encoding the α subunit of the stimulatory G protein, Gs. By causing a characteristic structural subversion of bone and bone marrow, the disease results in deformity, hypomineralization, and fracture of the affected bones, with severe morbidity arising in childhood or adolescence. Lack of inheritance of the disease in humans is thought to reflect embryonic lethality of germline-transmitted activating Gsα mutations, which would only survive through somatic mosaicism. We have generated multiple lines of mice that express GsαR201C constitutively and develop an inherited, histopathologically exact replica of human FD. Robust transgene expression in neonatal and embryonic tissues, and embryonic stem (ES) cells was associated with normal development of skeletal tissues and differentiation of skeletal cells. As in humans, FD lesions in mice developed only in the postnatal life; a defined spatial and temporal pattern characterized the onset and progression of lesions across the skeleton. In individual bones, lesions developed through a sequence of three distinct histopathological stages: a primary modeling phase defined by endosteal/medullary excess bone formation, and normal resorption; a secondary phase, with excess, inappropriate remodeling; and a tertiary fibrous dysplastic phase, which reproduced a full-blown replica of the human bone pathology in mice of age ≥1 year. Gsα mutations are sufficient to cause FD, and are per se compatible with germline transmission and normal embryonic development in mice. Our novel murine lines constitute the first model of FD.
Fibrous dysplasia of bone/McCune‐Albright syndrome (Polyostotic FD/MAS; OMIM#174800) is a crippling skeletal disease caused by gain‐of‐function mutations of Gsα. Enhanced bone resorption is a recurrent histological feature of FD and a major cause of fragility of affected bones. Previous work suggests that increased bone resorption in FD is driven by RANKL and some studies have shown that the anti‐RANKL monoclonal antibody, denosumab, reduces bone turnover and bone pain in FD patients. However, the effect of RANKL inhibition on the histopathology of FD and its impact on the natural history of the disease remain to be assessed. In this study, we treated the EF1α‐GsαR201C mice, which develop an FD‐like phenotype, with an anti‐mouse RANKL monoclonal antibody. We found that the treatment induced marked radiographic and microscopic changes at affected skeletal sites in 2‐month‐old mice. The involved skeletal segments became sclerotic due to the deposition of new, highly mineralized bone within developing FD lesions and showed a higher mechanical resistance compared to affected segments from untreated transgenic mice. Similar changes were also detected in older mice with a full‐blown skeletal phenotype. The administration of anti‐mouse RANKL antibody arrested the growth of established lesions and, in young mice, prevented the appearance of new ones. However, after drug withdrawal, the newly formed bone was remodelled into FD tissue and the disease progression resumed in young mice. Taken together, our results show that the anti‐RANKL antibody significantly affected the bone pathology and natural history of FD in the mouse. Pending further work on the prevention and management of relapse after treatment discontinuation, our preclinical study suggests that RANKL inhibition may be an effective therapeutic option for FD patients. © 2019 American Society for Bone and Mineral Research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.