Background There is a paucity of knowledge on the long-term outcome in patients diagnosed with COVID-19. We describe a cohort of patients with a constellation of symptoms occurring four weeks after diagnosis causing different degrees of reduced functional capacity. Although different hypothesis have been proposed to explain this condition like persistent immune activation or immunological dysfunction, to date, no physiopathological mechanism has been identified. Consequently, there are no therapeutic options besides symptomatic treatment and rehabilitation. Methods We evaluated patients with symptoms that persisted for at least 4 weeks after COVID-19. Epidemiological and clinical data were collected. Blood tests, including inflammatory markers, were conducted, and imaging studies made if deemed necessary. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription polymerase chain reaction (RT-PCR) in plasma, stool, and urine were performed. Patients were offered antiviral treatment (compassionate use). Results We evaluated 29 patients who reported fatigue, muscle pain, dyspnea, inappropriate tachycardia, and low-grade fever. Median number of days from COVID-19 to positive RT-PCR in extra-respiratory samples was 55 (39–67). Previous COVID-19 was mild in 55% of the cases. Thirteen patients (45%) had positive plasma RT-PCR results and 51% were positive in at least one RT-PCR sample (plasma, urine, or stool). Functional status was severely reduced in 48% of the subjects. Eighteen patients (62%) received antiviral treatment. Improvement was seen in most patients (p = 0.000) and patients in the treatment group achieved better outcomes with significant differences (p = 0.01). Conclusions In a cohort of COVID-19 patients with persistent symptoms, 45% of them have detectable plasma SARS-CoV-2 RNA. Our results indicate possible systemic viral persistence in these patients, who may benefit of antiviral treatment strategies.
Objectives: The purpose of this study was to detect COVID-19 cases with persistent positive RT-PCR results for SARS-CoV-2, for which viable virus can be inferred, due to the presence of subgenomic (SG) viral RNA, which is expressed only in replicating viruses. Methods: RNA remnants, purified from diagnostic nasopharyngeal specimens, were used as templates for RT-PCR specific detection of SG E gene RNA. As controls, we also detected viral genomic RNA for the E gene and/or a human housekeeping gene (RNase P). Results: We assessed the samples of 60 RT-PCR-positive cases with a prolonged viral SARS-CoV-2 shedding (24-101 days) since the first diagnostic RT-PCR. SG viral RNA was detected in 12/60 (20%) of the persistent cases, 28-79 days after the onset of symptoms. The age range of the cases with prolonged viral shedding and presence of SG RNA was quite wide (40-100 years), and they were equally distributed between males (42%) and females (58%). None was HIV positive, although seven were immunosuppressed. According to the severity of the COVID-19 episodes they were mild (40%), intermediate (20%), and severe (40%) Conclusion: In a percentage of persistent positive SARS-CoV-2 PCR positive cases the presence of actively replicating virus may be inferred, far beyond diagnosis. We should not assume a universal lack of infectiousness for COVID-19 cases with prolonged viral shedding.
Estimates of the burden of severe acute respiratory syndrome coronavirus 2 reinfections are limited by the scarcity of population-level studies incorporating genomic support. We conducted a systematic study of reinfections in Madrid, Spain, supported by genomic viral analysis and host genetic analysis, to cleanse laboratory errors and to discriminate between reinfections and recurrences involving the same strain. Among the 41,195 cases diagnosed (March 2020–March 2021), 93 (0.23%) had 2 positive reverse transcription PCR tests (55–346 days apart). After eliminating cases with specimens not stored, of suboptimal sequence quality, or belonging to different persons, we obtained valid data from 22 cases. Of those, 4 (0.01%) cases were recurrences involving the same strain; case-patients were 39–93 years of age, and 3 were immunosuppressed. Eighteen (0.04%) cases were reinfections; patients were 19–84 years of age, and most had no relevant clinical history. The second episode was more severe in 8 cases.
SARS‐CoV‐2 RT‐PCR cycle threshold values from 18,803 cases (2 March–4 October) in Madrid define three stages: (i) initial ten weeks with sustained reduction in viral load (Ct: 23.4–32.3), (ii) stability with low viral loads (Ct: 31.9–35.5) in the next nine weeks and (iii) sudden increase with progressive higher viral loads until reaching stability at high levels in the next twelve weeks, coinciding with an increased percentage of positive cases and reduced median age. These data indicate differential virological/epidemiological patterns between the first and second COVID‐19 waves in Madrid.
Background SARS-CoV-2 recombinants involving the divergent Delta and Omicron lineages have been described, and one of them, “Kraken” (XBB.1.5), has recently been a matter of concern. Recombination requires the coexistence of two SARS-CoV-2 strains in the same individual. Only a limited number of studies have focused on the identification of co-infections and are restricted to co-infections involving the Delta/Omicron lineages. Methods We performed a systematic identification of SARS-CoV-2 co-infections throughout the pandemic (7609 different patients sequenced), not biassed towards the involvement of highly divergent lineages. Through a comprehensive set of validations based on the distribution of allelic frequencies, phylogenetic consistency, re-sequencing, host genetic analysis and contextual epidemiological analysis, these co-infections were robustly assigned. Results Fourteen (0.18%) co-infections with ≥ 8 heterozygous calls (8–85 HZs) were identified. Co-infections were identified throughout the pandemic and involved an equal proportion of strains from different lineages/sublineages (including pre-Alpha variants, Delta and Omicron) or strains from the same lineage. Co-infected cases were mainly unvaccinated, with mild or asymptomatic clinical presentation, and most were at risk of overexposure associated with the healthcare environment. Strain segregation enabled integration of sequences to clarify nosocomial outbreaks where analysis had been impaired due to co-infection. Conclusions Co-infection cases were identified throughout the pandemic, not just in the time periods when highly divergent lineages were co-circulating. Co-infections involving different lineages or strains from the same lineage were occurring in the same proportion. Most cases were mild, did not require medical assistance and were not vaccinated, and a large proportion were associated with the hospital environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.