Research in pig-to-primate xenotransplantation aims to solve the increasing shortage of organs for human allotransplantation and develop new cell- and tissue-based therapies. Progress towards its clinical application has been hampered by the presence of xenoreactive natural antibodies that bind to the foreign cell surface and activate complement, causing humoral graft rejection. Genetic engineering of donor cells and animals to express human complement inhibitors such as hCD59 significantly prolonged graft survival. Strategies to decrease the deposition of natural antibodies were also developed. Expression of human alpha1,2-fucosyltransferase (H transferase, HT) in pigs modifies the cell-surface carbohydrate phenotype resulting in reduced Galalpha1,3-Gal expression and decreased antibody binding. We have developed transgenic pigs that coexpress hCD59 and HT in various cells and tissues to address both natural antibody binding and complement activation. Functional studies with peripheral blood mononuclear cells and aortic endothelial cells isolated from the double transgenic pigs showed that coexpression of hCD59 and HT markedly increased their resistance to human serum-mediated lysis. This resistance was greater than with cells transgenic for either hCD59 or HT alone. Moreover, transgene expression was enhanced and protection maintained in pig endothelial cells that were exposed for 24 h to pro-inflammatory cytokines. These studies suggest that engineering donor pigs to express multiple molecules that address different humoral components of xenograft rejection represents an important step toward enhancing xenograft survival and improving the prospect of clinical xenotransplantation.
Infections of horses with equine herpesvirus type 1 (EHV-1) have garnered new attention over the last few years. Devastating outbreaks occurring worldwide, primarily of the neurologic form of the disease, have resulted in a reassessment of the control strategies, and particularly the prophylactic measures, that are necessary to keep the infection and spread of disease in check. Most of the available EHV-1 vaccines are based on preparations of inactivated virus, which are applied monovalently for prevention of EHV-1-caused abortion in pregnant mares or as part of multivalent vaccines to prevent respiratory disease. Despite the importance of an induction of cytotoxic immune responses for protection against EHV-1-induced disease, only two modified live virus vaccine preparations, which are both based on the avirulent EHV-1 strain RacH and were developed more than 40 years ago, are commercially available. Current efforts focus on exploiting the available infectious bacterial artificial chromosome clones of various EHV-1 strains to engineer a new generation of modified live virus vaccines. Both more efficient and long-lasting anti-EHV-1 immunity and delivery of immunogens of other pathogens are attempted and within immediate reach. The improvement of modified live virus vaccines will likely be a major focus of research in the future, and will hopefully help to more completely protect horses against one of the most important and devastating viral diseases.
In 2004, canine influenza virus (CIV) was identified as a respiratory pathogen of dogs for the first time and is closely related to H3N8 equine influenza virus (EIV). We generated a recombinant vectored vaccine that expresses H3 of a recent isolate of EIV using equine herpesvirus type 1 (EHV-1) as the delivery vehicle. This EHV-1 vectored vaccine exhibited robust and stable EIV H3 expression and induced a strong influenza virus-specific response in both mice and dogs upon intranasal or subcutaneous administration. Furthermore, upon challenge with the recent CIV isolate A/canine/PA/ 10915-07, protection of vaccinated dogs could be demonstrated by a significant reduction in clinical sings, and, more importantly, by a significant reduction in virus shedding. We concluded that the EHV-1/H3 recombinant vector can be a valuable alternative for protection of dogs against clinical disease induced by CIV and can significantly reduce spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.