In this paper, we introduce logistic models to analyse fertility curves. The models are formulated as linear models of the log odds of fertility and are defined in terms of parameters that are interpreted as measures of level, location and shape of the fertility schedule. This parameterization is useful for the evaluation, and interpretation of fertility trends and projections of future period fertility. For a series of years, the proposed models admit a state-space formulation that allows a coherent joint estimation of parameters and forecasting. The main features of the models compared with other alternatives are the functional simplicity, the flexibility, and the interpretability of the parameters. These and other features are analysed in this paper using examples and theoretical results. Data from different countries are analysed, and to validate the logistic approach, we compare the goodness of fit of the new model against well-known alternatives; the analysis gives superior results in most developed countries.logistic model, fertility schedule, state-space model, maximum-likelihood estimation, Tempo, quantum,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.