Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically environmental variation associated with risk of bacterial proliferation determining the strength of such effects. Because of costs associated to nest building, birds should adjust nest building effort to expected bacterial environments during incubation, a prediction that should be further explored.
Summary1. Mechanisms guaranteeing reliability of messages are essential in understanding the underlying information and evolution of signals. Micro-organisms may degrade signalling traits and therefore influence the transmitted information and evolution of these characters. The role of micro-organisms in animal signalling has, however, rarely been investigated. 2. Here, we explore a possible role for feather-degrading bacteria driving the design of ornamental throat feathers in male spotless starlings (Sturnus unicolor). We estimated length, bacterial load, degradation status and susceptibility to degradation by keratinolytic bacteria in those feathers, compared with non-ornamental adjacent feathers in males, as well as to throat feathers in females. In addition, the volume of the uropygial gland and its secretion was measured and the secretion extracted. We also experimentally evaluated the capacity of each secretion to inhibit growth of a keratinolytic bacterium. 3. The apical part of male ornamental throat feathers harboured more bacteria and degraded more quickly than the basal part; these patterns were not detected in female throat feathers or in non-ornamental male feathers. Moreover, degradation status of male and female throat feathers did not differ, but was positively associated with feather bacterial density. Finally, the size of the uropygial gland in both males and females predicted volume and the inhibitory capacity of secretion against feather-degrading bacteria. Only in males was uropygial gland size negatively associated with the level of feather degradation. 4. All results indicate differential susceptibility of different parts of throat feathers to keratinolytic bacterial attack, which supports the possibility that throat feathers in starlings reflect individual ability to combat feather-degrading bacteria honestly. This is further supported by the relationship detected between antimicrobial properties of uropygial secretion and the level of feather degradation. 5. Our results suggest that selection pressures exerted by feather-degrading bacteria on hosts may promote evolution of particular morphologies of secondary sexual traits with different susceptibility to bacterial degradation that reliably inform of their bacterial load. Those results will help to understand the evolution of ornamental signals.
Research on the mechanisms involved in host location by parasites is of paramount importance and may aid in developing protective measures against them. This topic attains far-reaching repercussions for human and animal welfare regarding parasites transmitting vector-borne pathogens, such as blood-feeding flies. Very few studies have evaluated the effect of bird-derived cues on attraction of vectors in field conditions. We here explored the attraction of different groups of blood-feeding flies (mosquitoes, blackflies and biting midges) to auditory cues produced by begging hoopoe (Upupa epops) nestlings, and to three chemical cues derived from hoopoe nestlings or nests (uropygial secretion, symbiotic bacteria isolated from the secretion, and nest material) in the field. We deployed insect traps baited with the different stimuli at the beginning and at the end of the hoopoe breeding-season in four different habitats. Abundance of blood-feeding flies varied depending on habitat and sampling period. Begging auditory cues of nestling hoopoes did not affect abundance of flies. However, chemical stimuli affected abundance of mosquitoes, which were less abundant in traps baited with bacteria or with nest material than in control traps. Abundance of biting midges in traps also depended on the chemical stimulus but in interaction with sampling period or habitat. Fewer biting midges were collected in traps baited with bacteria and with secretion in the habitats where abundance of biting midges is higher. Our results suggest that uropygial secretion of hoopoes, and symbiotic bacteria living in this secretion, may repel blood-feeding flies from their nests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.