Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation.
Objectives The safety, painless and tolerability features of transcranial Direct Current Stimulation (tDCS) have prompted the research on the therapeutic effects of this neuromodulator technique in stroke; however, an in-depth and unarguable examination of the adverse effects of tDCS in stroke patients is still lacking. This review analyzes the reported adverse effects in stroke, looking for factors that may induce side-effects. Materials and Methods A comprehensive search of articles published from 1998 to 2015 describing tDCS application in stroke patients performed through data extraction from MEDLINE/PubMed database. Results Only 11.62% of published papers reported the occurrence of tDCS adverse effects in stroke patients. The most common was itching (70%), followed by burning sensation (40%), headache (40%), tingling (30%), sleepiness (20%), difficulty of concentration, mild fatigue, skin redness and dizziness (10%). No significant difference was found between studies ‘Reporting’ vs. ‘Non-reporting’ adverse effects regarding tDCS parameters (intensity, current density, duration of stimulation, and number of sessions). Conclusion In the majority of stroke patients, tDCS did not induce any severe adverse effect. Regrettably, many published papers did not provide a careful description of exclusion criteria, or a systematic report of side effects. Our work emphasizes the need of a more meticulous description of the adopted exclusion criteria and of the induced adverse effects, in order to optimize the therapeutic use of tDCS and to better delineate its safety parameters in stroke.
In everyday life, many diverse bits of information, simultaneously derived from the different sensory channels, converge into discrete brain areas, and are ultimately synthetized into unified percepts. Such multisensory integration can dramatically alter the phenomenal experience of both environmental events and our own body. Crossmodal illusions are one intriguing product of multisensory integration. This review describes and discusses the main clinical applications of the most known crossmodal illusions in rehabilitation settings. We consider evidence highlighting the contribution of crossmodal illusions to restore, at least in part, defective mechanisms underlying a number of disorders of body representation related to pain, sensory, and motor impairments in neuropsychological and neurological diseases, and their use for improving neuroprosthetics. This line of research is enriching our understanding of the relationships between multisensory functions and the pathophysiological mechanisms at the basis of a number of brain disorders. The review illustrates the potential of crossmodal illusions for restoring disarranged spatial and body representations, and, in turn, different pathological symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.