Summary.The human leukaemic K562 cell line can be induced in vitro to undergo erythroid differentiation by a variety of chemical compounds, including haemin, butyric acid, 5-azacytidine and cytosine arabinoside. Differentiation of K562 cells is associated with an increased expression of embryo-fetal globin genes, such as the z, e and g globin genes. Therefore the K562 cell line has been proposed as a useful in vitro model system to determine the therapeutic potential of new differentiating compounds as well as to study the molecular mechanism(s) regulating changes in the expression of embryonic and fetal human globin genes. Inducers of erythroid differentiation which stimulate gglobin synthesis could be considered for possible use in the experimental therapy of those haematological diseases associated with a failure in the expression of adult b-globin genes. In this paper we demonstrated that the G þ C selective DNA-binding drugs chromomycin and mithramycin were powerful inducers of erythroid differentiation of K562 cells. Erythroid differentiation was associated with an increase in the accumulation of (a) Hb Gower 1 and Hb Portland and (b) g-globin mRNA.
We determined whether peptide nucleic acids (PNAs) are able to interact with NF-B p52 transcription factor. The binding of NF-B p52 to DNA-DNA, DNA-PNA, PNA-DNA, and PNA-PNA hybrid molecules carrying the NF-B binding sites of human immunodeficiency type 1 long terminal repeat was studied by (i) biospecific interaction analysis (BIA) using surface plasmon resonance technology, (ii) electrophoretic mobility shift, (iii) DNase I footprinting, and (iv) UV cross-linking assays. Our results demonstrate that NF-B p52 does not efficiently bind to PNA-PNA hybrids. However, a DNA-PNA hybrid molecule was found to be recognized by NF-B p52, although the molecular complexes generated exhibited low stability. From the theoretical point of view, our results suggest that binding of NF-B p52 protein to target DNA motifs is mainly due to contacts with bases; interactions with the DNA backbone are, however, important for stabilization of the protein-DNA complex. From the practical point of view, our results suggest that DNA-PNA hybrid can be recognized by NF-B p52 protein, although with an efficiency lower than DNA-DNA NF-B target molecules; therefore, our results should encourage studies on modified PNAs in order to develop potential agents for the decoy approach in gene therapy.It is well established that both constitutive and tissue-specific regulation of gene expression is operated at the transcriptional level by the interaction between nuclear proteins (transcription factors) and promoter regions containing DNA elements (transcription signals) that exhibit specific nucleotide sequences (1-4). Several reviews reporting the nucleotide sequences of transcription signals and the relative binding proteins have been published (5-7). The requirement of protein-
The synthesis, biological activity, and DNA-binding properties of a series of four hybrids prepared by combining polypyrrole minor groove binders and pyrrolo[2,1-c][1,4]benzodiazepine (PBD) 13, related to the naturally occurring anthramycin (3) and DC-81 (4), have been described, and structure-activity relationships have been discussed. These hybrids 22-25 contain from one to four pyrrole units, respectively. To investigate sequence selectivity and stability of drug/DNA complexes, DNase I footprinting and arrested polymerase chain reaction (PCR) were performed on human c-myc oncogene, estrogen receptor gene, and human immunodeficiency virus type 1 long terminal repeat (HIV-1 LTR) gene sequences. The antiproliferative activity of the hybrids has been tested in vitro on human myeloid leukemia K562 and T-lymphoid Jurkat cell lines and compared to antiproliferative effects of the natural product distamycin A 1, its tetrapyrrole homologue 17, DC 81 (4), and the PBD methyl ester 12. The results obtained demonstrate that the hybrids 22-25 exhibit different DNA-binding activity with respect to both distamycin A 1 and PBD 12. In addition, a direct relationship was found between number of pyrrole rings present in the hybrids 22-25 and stability of drug/DNA complexes. With respect to antiproliferative effects, it was found that the increase in the length of the polypyrrole backbone leads to an increase of in vitro antiproliferative effects, i.e., the hybrid 25 containing the four pyrroles is more active than 22, 23, and 24 both against K562 and Jurkat cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.