In this study, we have reported for the first time a complete experimental investigation on the compound Neutral Red and the new monobrominated derivative in different media as a function of the concentration. These compounds belong to the quinone-imine class of dyes and have good potential to be applied as photosensitizers in Photodynamic Therapy.Although the aggregation of Neutral Red has been reported by several authors, this has not been thoroughly evaluated due to spectral changes occurring depending on the solvent and concentration of dye.
Triarylmethane and thiazine dyes have attracted attention as anticancer and antimicrobial agents, due to their structural features and selective localizations. Although these dyes have been initially explored in the context of photodynamic therapy, some of these such as New Fuchsin and Azure B have still not been extensively investigated. For this reason, we evaluated the chemical stability, aggregation effect, and lipophilicity, as well as the photodynamic activity against LM-2 murine mammary carcinoma cells of five new brominated dyes of triarylmethane and thiazine. These cationic compounds were obtained at high purities and unequivocally characterized by conventional techniques. The introduction of bromine atoms into the chromophoric system of New Fuchsin and Azure B dyes gave rise to a moderate bathochromic shift and increased the lipophilicity, thereby improving their photophysical and photochemical properties for biomedical applications. Moreover, the in vitro photodynamic activity demonstrated that, as the degree of bromination increased, the phototoxicity remained unchanged or decreased. The lower efficiency to inactivate cultured tumor cells may be attributed to the formation of the colorless carbinol pseudobase and aggregation effects for triarylmethane and thiazine dyes, respectively. A promising strategy to reverse the biological activity decrease observed might be the design of third-generation photosensitizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.