The study of naturalistic social behavior requires quantification of animals’ interactions. This is generally done through manual annotation—a highly time-consuming and tedious process. Recent advances in computer vision enable tracking the pose (posture) of freely behaving animals. However, automatically and accurately classifying complex social behaviors remains technically challenging. We introduce the Mouse Action Recognition System (MARS), an automated pipeline for pose estimation and behavior quantification in pairs of freely interacting mice. We compare MARS’s annotations to human annotations and find that MARS’s pose estimation and behavior classification achieve human-level performance. We also release the pose and annotation datasets used to train MARS to serve as community benchmarks and resources. Finally, we introduce the Behavior Ensemble and Neural Trajectory Observatory (BENTO), a graphical user interface for analysis of multimodal neuroscience datasets. Together, MARS and BENTO provide an end-to-end pipeline for behavior data extraction and analysis in a package that is user-friendly and easily modifiable.
The study of social behavior requires scoring the animals’ interactions. This is generally done by hand— a time consuming, subjective, and expensive process. Recent advances in computer vision enable tracking the pose (posture) of freely-behaving laboratory animals automatically. However, classifying complex social behaviors such as mounting and attack remains technically challenging. Furthermore, the extent to which expert annotators, possibly from different labs, agree on the definitions of these behaviors varies. There is a shortage in the neuroscience community of benchmark datasets that can be used to evaluate the performance and reliability of both pose estimation tools and manual and automated behavior scoring.We introduce the Mouse Action Recognition System (MARS), an automated pipeline for pose estimation and behavior quantification in pairs of freely behaving mice. We compare MARS’s annotations to human annotations and find that MARS’s pose estimation and behavior classification achieve human-level performance. As a by-product we characterize the inter-expert variability in behavior scoring. The two novel datasets used to train MARS were collected from ongoing experiments in social behavior, and identify the main sources of disagreement between annotators. They comprise 30,000 frames of manual annotated mouse poses and over 14 hours of manually annotated behavioral recordings in a variety of experimental preparations. We are releasing this dataset alongside MARS to serve as community benchmarks for pose and behavior systems. Finally, we introduce the Behavior Ensemble and Neural Trajectory Observatory (Bento), a graphical interface that allows users to quickly browse, annotate, and analyze datasets including behavior videos, pose estimates, behavior annotations, audio, and neural recording data. We demonstrate the utility of MARS and Bento in two use cases: a high-throughput behavioral phenotyping study, and exploration of a novel imaging dataset. Together, MARS and Bento provide an end-to-end pipeline for behavior data extraction and analysis, in a package that is user-friendly and easily modifiable.
People spend considerable effort managing the impressions they give others. Social psychologists have shown that people manage these impressions differently depending upon their personality. Facebook and other social media provide a new forum for this fundamental process; hence, understanding people's behaviour on social media could provide interesting insights on their personality. In this paper we investigate automatic personality recognition from Facebook profile pictures. We analyze the effectiveness of four families of visual features and we discuss some human interpretable patterns that explain the personality traits of the individuals. For example, extroverts and agreeable individuals tend to have warm colored pictures and to exhibit many faces in their portraits, mirroring their inclination to socialize; while neurotic ones have a prevalence of pictures of indoor places. Then, we propose a classification approach to automatically recognize personality traits from these visual features. Finally, we compare the performance of our classification approach to the one obtained by human raters and we show that computer-based classifications are significantly more accurate than averaged human-based classifications for Extraversion and Neuroticism.
Images play a central role in digital marketing. They attract attention, trigger emotions, and shape consumers' first impressions of products and brands. We propose that the shift from one-to-many mass communication to highly personalized one-to-one communication requires an understanding of image appeal at a personal level. Instead of asking "How appealing is this image?" we ask "How appealing is this image to this particular consumer?" Using the well-established five-factor model of personality, we apply machine learning algorithms to predict an image's personality appeal-the personality of consumers to which the image appeals most-from a set of 89 automatically extracted image features (Study 1). We subsequently apply the same algorithm on new images to predict consequential outcomes from the fit between consumer and image personality. We show that image-person fit adds incremental predictive power over the images' general appeal when predicting (a) consumers' liking of new images (Study 2) and (b) consumers' attitudes and purchase intentions (Study 3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.