Background Severe coronavirus disease-2019 (COVID-19) can progress to an acute respiratory distress syndrome (ARDS), which involves alveolar infiltration by activated neutrophils. The beta-blocker metoprolol has been shown to ameliorate exacerbated inflammation in the myocardial infarction setting. Objectives The purpose of this study was to evaluate the effects of metoprolol on alveolar inflammation and on respiratory function in patients with COVID-19–associated ARDS. Methods A total of 20 COVID-19 patients with ARDS on invasive mechanical ventilation were randomized to metoprolol (15 mg daily for 3 days) or control (no treatment). All patients underwent bronchoalveolar lavage (BAL) before and after metoprolol/control. The safety of metoprolol administration was evaluated by invasive hemodynamic and electrocardiogram monitoring and echocardiography. Results Metoprolol administration was without side effects. At baseline, neutrophil content in BAL did not differ between groups. Conversely, patients randomized to metoprolol had significantly fewer neutrophils in BAL on day 4 (median: 14.3 neutrophils/µl [Q1, Q3: 4.63, 265 neutrophils/µl] vs median: 397 neutrophils/µl [Q1, Q3: 222, 1,346 neutrophils/µl] in the metoprolol and control groups, respectively; P = 0.016). Metoprolol also reduced neutrophil extracellular traps content and other markers of lung inflammation. Oxygenation (PaO 2 :FiO 2 ) significantly improved after 3 days of metoprolol treatment (median: 130 [Q1, Q3: 110, 162] vs median: 267 [Q1, Q3: 199, 298] at baseline and day 4, respectively; P = 0.003), whereas it remained unchanged in control subjects. Metoprolol-treated patients spent fewer days on invasive mechanical ventilation than those in the control group (15.5 ± 7.6 vs 21.9 ± 12.6 days; P = 0.17). Conclusions In this pilot trial, intravenous metoprolol administration to patients with COVID-19–associated ARDS was safe, reduced exacerbated lung inflammation, and improved oxygenation. Repurposing metoprolol for COVID-19–associated ARDS appears to be a safe and inexpensive strategy that can alleviate the burden of the COVID-19 pandemic.
Cutaneous lesions in the setting of myeloproliferative neoplasms and myelodysplastic syndromes are poorly understood. We report 6 patients with pruritic papular eruptions composed of mature T-lymphocytes with large clusters of CD123-positive cells. Double immunohistochemical studies demonstrated a lack of myeloid cell nuclear differentiation antigen in the CD123-positive cells, which expressed SPIB, confirming that they were mature plasmacytoid dendritic cells. Four patients were diagnosed with chronic myelomonocytic leukemia and 2 with myelodysplastic syndromes (AREB-I and myelodysplastic syndromes with 5q deletion, respectively). All patients had a long history of hematological alterations, mainly thrombocytopenia, preceding the cutaneous disorder. Nevertheless, the skin lesions developed in all cases coincidentally with either progression or full-establishment of their hematological disease. Most cutaneous lesions disappeared spontaneously or after corticosteroid treatment. Molecular studies performed in both bone marrow and cutaneous lesions in 2 patients demonstrated the same mutational profile, confirming the specific, neoplastic nature of these mature plasmacytoid dendritic cells-composed cutaneous lesions.
Background: The majority of patients with acute promyelocytic leukemia (APL) manifest a specific chromosomal translocation t(15;17)(q22;q21), characterized by the fusion of RARA and PML genes. However, a proportion of APL cases are due to variant translocations, being t(11;17) (q23;q21) the most common amongst them. With the major exception of ZBTB16-RARA t(11;17) APL, these variant APL cases present similar morphological features as classic APL and are characterized by a lack of differentiation response to retinoids. Case summary: We describe the case of variant APL with the ZBTB16-RARA fusion gene, showing a distinct morphology of classical APL, characterized by crystalline intracytoplasmic inclusions in both peripheral blood (PB) and bone marrow (BM) patients’ blasts. Our patient was treated with two courses of intensive chemotherapy, initiating maintenance treatment with all-trans retinoic acid (ATRA) on day twenty-eight of the second course. Our patient achieved complete remission (CR) once the intensive chemotherapy was combined with ATRA.Conclusions: This is the second case described of APL with t(11;17) that showed crystalline intracytoplasmic inclusions. The finding of these morphological features may suggest the presence of a variant translocation with RARA, being that both cases described are related to the presence of t(11;17). Despite induction treatment with intensive chemotherapy that included a seven-day continuous treatment with cytarabine (200 mg/m2), plus daily idarubicin (12 mg/m2) during the first three days, our patient did not achieve complete remission (CR) until scheduled 3 + 7 regimen combined with ATRA treatment was established. This observation suggests that ATRA may be partially effective in some ZBTB16-RARA APLs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.