Mutations leading to aberrant cytoplasmic localization of nucleophosmin (NPM) are the most frequent genetic alteration in acute myelogenous leukemia (AML). NPM binds the Arf tumor suppressor and protects it from degradation. The AML-associated NPM mutant (NPMmut) also binds p19Arf but is unable to protect it from degradation, which suggests that inactivation of p19Arf contributes to leukemogenesis in AMLs. We report here that NPM regulates turnover of the c-Myc oncoprotein by acting on the F-box protein Fbw7γ, a component of the E3 ligase complex involved in the ubiquitination and proteasome degradation of c-Myc. NPM was required for nucleolar localization and stabilization of Fbw7γ. As a consequence, c-Myc was stabilized in cells lacking NPM. Expression of NPMmut also led to c-Myc stabilization because of its ability to interact with Fbw7γ and delocalize it to the cytoplasm, where it is degraded. Because Fbw7 induces degradation of other growth-promoting proteins, the NPM–Fbw7 interaction emerges as a central tumor suppressor mechanism in human cancer.
The processes of neurite extension and remodeling require a close coordination between the cytoskeleton and the cell membranes. The small GTPase ARF6 (ADP-ribosylation factor 6) has a central role in regulating membrane traffic and actin dynamics, and its activity has been demonstrated to be involved in neurite elaboration. EFA6A has been shown to act as a guanine nucleotide exchange factor (GEF) for ARF6. Here, we report that two distinct isoforms of the EFA6A gene are expressed in murine neural tissue: a long isoform of 1025 amino acids (EFA6A), and a short isoform of 393 amino acids (EFA6As). EFA6A encompasses proline-rich regions, a Sec7 domain (mediating GEF activity on ARF6), a PH domain, and a C-terminal region with coiled-coil motifs. EFA6As lacks the Sec7 domain, and it comprises the PH domain and the C-terminal region. The transcript encoding EFA6As is the result of alternative promoter usage. EFA6A and EFA6As have distinct biological activities: upon overexpression in HeLa cells, EFA6A induces membrane ruffles, whereas EFA6As gives rise to cell elongation; in primary cortical neurons EFA6A promotes neurite extension, whereas EFA6As induces dendrite branching. Our findings suggest that EFA6A could participate in neuronal morphogenesis through the regulated expression of two functionally distinct isoforms.
HighlightsA scFv intrabody specific for the NPMc+ mutant NES sequence was isolated.It was expressed as a fusion with a NLS and such construct accumulates in the nucleus.The scFv-NLS fusion binds its antigen in the cytoplasm of eukaryotic cells.The complex shuttles to the nucleus but accumulates in the cytoplasm.Stronger NLS should be developed to revert the strength of pathogenic NES.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.