Inflammatory bowel diseases (IBDs) are chronic disorders of modern society, requiring management strategies aimed at prolonging an active life and establishing the exact etiology and pathogenesis. These idiopathic diseases have environmental, genetic, immunologic, inflammatory, and oxidative stress components. On the one hand, recent advances have shown that abnormal immune reactions against the microorganisms of the intestinal flora are responsible for the inflammation in genetically susceptible individuals. On the other hand, in addition to T helper cell-type (Th) 1 and Th2 immune responses, other subsets of T cells, namely regulatory T cells and Th17 maintained by IL-23 are likely to develop IBD. IL-23 acts on innate immune system members and also facilitates the expansion and maintenance of Th17 cells. The IL-17/IL-23 axis is relevant in IBD pathogenesis both in human and experimental studies. Novel biomarkers of IBD could be calprotectin, microRNAs, and serum proinflammatory cytokines. An efficient strategy for IBD therapy is represented by the combination of IL-17A and IL-17F in acute IL-17A knockout TNBS-induced colitis, and also definite decrease of the inflammatory process in IL-17F knockout, DSS-induced colitis have been observed. Studying the correlation between innate and adaptive immune systems, we hope to obtain a focused review in order to facilitate future approaches aimed at elucidating the immunological mechanisms that control gut inflammation.
Recent knowledge concerning the role of non-coding RNAs (ncRNAs) in myocardial ischemia/reperfusion (I/R) injury provides new insight into their possible roles as specific biomarkers for early diagnosis, prognosis, and treatment. MicroRNAs (miRNAs) have fewer than 200 nucleotides, while long ncRNAs (lncRNAs) have more than 200 nucleotides. The three types of ncRNAs (miRNAs, lncRNAs, and circRNAs) act as signaling molecules strongly involved in cardiovascular disorders (CVD). I/R injury of the heart is the main CVD correlated with acute myocardial infarction (AMI), cardiac surgery, and transplantation. The expression levels of many ncRNAs and miRNAs are highly modified in the plasma of MI patients, and thus they have the potential to diagnose and treat MI. Cardiomyocyte and endothelial cell death is the major trigger for myocardial ischemia–reperfusion syndrome (MIRS). The cardioprotective effect of inflammasome activation in MIRS and the therapeutics targeting the reparative response could prevent progressive post-infarction heart failure. Moreover, the pharmacological and genetic modulation of these ncRNAs has the therapeutic potential to improve clinical outcomes in AMI patients.
Background and aims. Recent research has shown that microRNAs (miRNAs), a class of sequences regulating gene expression without undergoing translational processes, have been accepted as novel biomarkers of diseases. In the present meta-analysis, our main objective was to evaluate the diagnostic value of miRNAs expressed in different body fluids for AD, more exactly to analyze the discriminative value of miRNAs between AD and control subjects. Methods. Medline and EMBASE were searched for articles written in English language and because the result reporting modalities were extremely different in the studies included in the analysis, the current article comprises 2 meta-analysis studies, each of them using different statistical indicators. The first meta-analysis reviewed 10 studies, which were required to provide sufficient information to allow the calculation of AUC or Cohen’s d for size effect. We proposed a second meta-analysis, starting from the drawbacks identified in this first approach, which used different statistical indicators (fold change) provided by other studies (8 studies). Results. The present study offers an encouraging role of miRNA families in diagnosing AD. The heterogeneity of miRNA expression between the hippocampus, CSF and peripheral blood, the small sample size of each research study, as well as the different methods for miRNA detection remain the main obstacles in interpreting these results. Conclusions.There is a need (in a future perspective) to establish the right miRNA combinations as potent diagnostic biomarkers for AD.
This review aims to summarize the current knowledge on how lncRNAs are influencing aging and cancer metabolism. Recent research has shown that senescent cells re-enter cell-cycle depending on intrinsic or extrinsic factors, thus restoring tissue homeostasis in response to age-related diseases (ARDs). Furthermore, maintaining proteostasis or cellular protein homeostasis requires a correct quality control (QC) of protein synthesis, folding, conformational stability, and degradation. Long non-coding RNAs (lncRNAs), transcripts longer than 200 nucleotides, regulate gene expression through RNA-binding protein (RBP) interaction. Their association is linked to aging, an event of proteostasis collapse. The current review examines approaches that lead to recognition of senescence-associated lncRNAs, current methodologies, potential challenges that arise from studying these molecules, and their crucial implications in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.