The reuse of crop drainage into other crops, in the form of a cascade cropping system, is a feasible environmental solution where high inputs of water and fertilizer are used for crop growth and lower efficiency rates, associated with a high discharge of water and fertilizers into the environment, are present. Dracaena marginata plants were cultured in containers with sphagnum peat moss and were subjected to three different fertigation treatments for eight weeks: Dm0 (standard nutrient solution or control treatment), Dm1 (raw leachates), and Dm2 (raw leachates with additional H2O2), where the leachates were collected from a Chrysalidocarpus lutescens-Dracaena deremensis cascade cropping system. At the end of the harvesting, growth parameters, pigment concentration, leaf and root proline, total soluble sugar concentrations, and water and nutrient use efficiencies were assessed for each fertigation treatment. Plant height, root, stem, and total dry weight increased under fertigation with leachates with H2O2. The fertigation with leachates with or without H2O2 increased the red index value. There were no clear trends between the fertigation treatments with regards to pigment concentrations and biochemical parameters (proline and total soluble sugar concentrations). The addition of H2O2 to the leachate increased N concentration in the organs assessed, as well as the water and nutrient use efficiencies. There were no variations in H2PO4−, SO42−, Na+, and Mg2+ concentration in the chemical composition of the substrate between fertigation treatments. The positive results reported in this experiment suggest the potential growth of Dracaena marginata with leachate and hydrogen peroxide in a cascade cropping system.
The reuse of drainages for cultivating more salt tolerant crops can be a useful tool especially in arid regions, where there are severe problems for crops water management. Dracaena deremensis L. plants were cultured in pots with sphagnum peat-moss and were subjected to three fertigation treatments for 8 weeks: control treatment or standard nutrient solution (D0), raw leachates from Chrysalidocarpus lutescens H. Wendl plants (DL) and the same leachate blending with H2O2 (1.2 M) at 1% (v/v) (DL + H2O2). After harvesting, ornamental and biomass parameters, leaf and root proline and total soluble sugar concentration and nutrient balance were assessed in each fertigation treatment. Plant height, leaf and total dry weight had the highest values in plants fertigated with leachates with H2O2, whereas root length, leaf number, RGB values and pigment concentration declined significantly in plants fertigated with leachates from C. lutescens with or without H2O2. The fertigation with leachates, regardless of the presence or absence of H2O2 increased root and leaf proline concentration. Nevertheless, root and leaf total soluble sugar concentration did not show a clear trend under the treatments assessed. Regarding nutrient balance, the addition of H2O2 in the leachate resulted in an increase in plant nutrient uptake and efficiency compared to the control treatment. The fertigation with leachates with or without H2O2 increased nitrogen and potassium leached per plant compared to plants fertigated with the standard nutrient solution. The reuse of drainages is a viable option to produce ornamental plants reducing the problematic associated with the water consumption and the release of nutrients into the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.