Observations of cells of axenic peach palm (Bactris gasipaes) microplants by light microscopy revealed movements of small particles within the cells. The phenomenon was characterized initially as Brownian movement, but electron microscopy revealed the presence of an intracellular bacterial community in these plants. Microscopy observations revealed the particular shapes of bacterial cells colonizing inner tissues of analyzed plants. Applying a molecular characterization by polymerase chain reaction and denaturing gradient gel electrophoresis, it was revealed the existence of bacterial rRNA within the plants. Sequencing of the rRNA identified three different phylogenetic groups; two bands had a high degree of similarity to sequences from Moraxella sp. and Brevibacillus sp., and a third sequence was similar to a non-cultivated cyanobacterium. The presence of those endosymbionts, called bacteriosomes, in axenic peach palm microplants raises the question of whether these stable endosymbionts were acquired in the process of evolution and how could they benefit the process of plants micropropagation.
Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells.
In vitro propagated plants are believed to be free of microbes. However, after 5 years of in vitro culture of pineapple plants, without evidence of microbial contamination, the use of culture-independent molecular approach [classifying heterogeneous nucleic acids amplified via universal and specific 16S rRNA gene by polymerase chain reaction (PCR)], and further analysis by denaturing gradient gel electrophoresis (DGGE) revealed endophytic bacteria in roots, young and mature leaves of such plants. The amplification of 16S rRNA gene (Bacteria domain) with the exclusion of the plant chloroplast DNA interference, confirmed the presence of bacterial DNA, from endophytic microorganisms within microplant tissues. PCR-DGGE analysis revealed clear differences on bacterial communities depending on plant organ. Groupspecific DGGE analyses also indicated differences in the structures of Actinobacteria, Alphaproteobacteria and Betaproteobacteria communities in each part of plants. The results suggest the occurrence of a succession of bacterial communities colonizing actively the microplants organs. This study is the first report that brings together evidences that pineapple microplants, previously considered axenic, harbor an endophytic bacterial community encompassing members of Actinobacteria, Alphaproteobacteria and Betaproteobacteria group which is responsive to differences in organs due to plant development.
Resumo -A perda de plantas micropropagadas ocorre, principalmente, pela presença de microrganismos, responsáveis pela morte das plantas no início da cultura ou em seu estabelecimento no campo. O trabalho teve como objetivo a identificação, por taxonomia clássica, e por meio de técnicas moleculares, de fungos presentes nos ápices caulinares de pupunheiras sadias, cultivadas no campo, e a comparação com os fungos isolados, em plantas micropropagadas há dois anos. Os isolados da microbiota fúngica endofítica, das plantas cultivadas in vitro, foram: Fusarium oxysporum, Neotyphodium sp. e Epicoccum nigrum; e das plantas in vivo, foram: Fusarium sp., F. proliferatum, F. oxysporum, Colletotrichum sp., Alternaria gaisen, Neotyphodium sp. e Epicoccum nigrum. As sete espécies de fungos foram reintroduzidas in vitro na planta hospedeira, demonstrando diferentes comportamentos. Neotyphodium sp. e E. nigrum estabeleceram uma interação endofítica com a planta, e as demais comportaram-se como patógenos, diminuindo o desenvolvimento das plântulas em relação às plantas sem inoculação. As espécies endofíticas apresentam potencial para o uso no controle biológico de patógenos de pupunha.Termos para indexação: Bactris gasipaes, patógenos latentes, fungos, controle biológico. Endophytic fungi in shoot tip of the pejibaye cultivated in vivo and in vitroAbstract -Losses of micropropagated plants occur in its majority due to presence of microorganisms responsible for plant death both in culture beginning and plant establishment in field. Two years in vitro cultivated pejibaye shoot tips, showed the presence of fungi colonies after transference for new culture medium. This paper aimed at identifying fungi, by classical taxonomy and by molecular methods, present in shoot tip of healthy pejibaye plants, cultivated in the field, and to compare them with isolated ones of in vitro plants. The isolates of endophytic fungi community of the in vitro plants were Fusarium oxysporum, Neotyphodium sp. and Epicoccum nigrum; from the in vivo plants were Fusarium sp., F. proliferatum, F. oxysporum, Colletotrichum sp., Alternaria gaisen, Neotyphodium sp. and E. nigrum. The seven species of fungi were reinoculated in host plant, revealing different behaviour. Neotyphodium sp. and E. nigrum established an endophytic interaction with the host; the other fungi acted as pathogens causing decrease in seedlings development when compared to the non-inoculated plants. Species acting as endophytes present a potential use in biocontrol of pejibaye pathogens.
-(Anatomical analysis of peach palm (Bactris gasipaes) leaves cultivated in vitro, ex vitro and in vivo). The present work characterized and compared the anatomical structures of the leaves of Bactris gasipaes (Arecaceae) plants grown under different cultivation conditions (in vitro, ex vitro and in vivo) with the goal of identifying the origins of the difficulties encountered in acclimatizing micro-plants. The Quant program was used to determine leaf tissue thicknesses and areas, and histochemical tests were performed on leaf sections and analyzed using light microscopy. Stomatal and trichome densities were determined using the epidermal impression method and by scanning electronic microscopy. Our results indicated that there were no discernible alterations of the anatomical characteristics of the leaves of micro-plants cultivated under differing conditions and that the thickening of the mesophyll and the vascular fibers indicated adaptive responses to ex vitro conditions. As such, the observed difficulties in acclimatizing peach palm micro-plants to ex vitro conditions cannot be attributed to plant anatomical characteristics acquired during in vitro cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.