Some specialist insects feed on plants rich in secondary compounds, which pose a major selective pressure on both the phytophagous and the gut microbiota. However, microbial communities of toxic plant feeders are still poorly characterized. Here, we show the bacterial communities of the gut of two specialized Lepidoptera, Hyles euphorbiae and Brithys crini, which exclusively feed on latex-rich Euphorbia sp. and alkaloid-rich Pancratium maritimum, respectively. A metagenomic analysis based on high-throughput sequencing of the 16S rRNA gene revealed that the gut microbiota of both insects is dominated by the phylum Firmicutes, and especially by the common gut inhabitant Enterococcus sp. Staphylococcus sp. are also found in H. euphorbiae though to a lesser extent. By scanning electron microscopy, we found a dense ring-shaped bacterial biofilm in the hindgut of H. euphorbiae, and identified the most prominent bacterium in the biofilm as Enterococcus casseliflavus through molecular techniques. Interestingly, this species has previously been reported to contribute to the immobilization of latex-like molecules in the larvae of Spodoptera litura, a highly polyphagous lepidopteran. The E. casseliflavus strain was isolated from the gut and its ability to tolerate natural latex was tested under laboratory conditions. This fact, along with the identification of less frequent bacterial species able to degrade alkaloids and/or latex, suggest a putative role of bacterial communities in the tolerance of specialized insects to their toxic diet.
BackgroundOnly a fraction of the microbial species used for anaerobic digestion in biogas production plants are methanogenic archaea. We have analyzed the taxonomic profiles of eubacteria and archaea, a set of chemical key parameters, and biogas production in samples from nine production plants in seven facilities in Thuringia, Germany, including co-digesters, leach-bed, and sewage sludge treatment plants. Reactors were sampled twice, at a 1-week interval, and three biological replicates were taken in each case.ResultsA complex taxonomic composition was found for both eubacteria and archaea, both of which strongly correlated with digester type. Plant-degrading Firmicutes as well as Bacteroidetes dominated eubacteria profiles in high biogas-producing co-digesters; whereas Bacteroidetes and Spirochaetes were the major phyla in leach-bed and sewage sludge digesters. Methanoculleus was the dominant archaea genus in co-digesters, whereas Methanosarcina and Methanosaeta were the most abundant methanogens in leachate from leach-bed and sewage sludge digesters, respectively.ConclusionsThis is one of the most comprehensive characterizations of the microbial communities of biogas-producing facilities. Bacterial profiles exhibited very low variation within replicates, including those of semi-solid samples; and, in general, low variation in time. However, facility type correlated closely with the bacterial profile: each of the three reactor types exhibited a characteristic eubacteria and archaea profile. Digesters operated with solid feedstock, and high biogas production correlated with abundance of plant degraders (Firmicutes) and biofilm-forming methanogens (Methanoculleus spp.). By contrast, low biogas-producing sewage sludge treatment digesters correlated with high titers of volatile fatty acid-adapted Methanosaeta spp.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-015-0271-6) contains supplementary material, which is available to authorized users.
Metagenomic sequencing has allowed for the recovery of previously unexplored microbial genomes. Whereas short-read sequencing platforms often result in highly fragmented metagenomes, nanoporebased sequencers could lead to more contiguous assemblies due to their potential to generate long reads. Nevertheless, there is a lack of updated and systematic studies evaluating the performance of different assembly tools on nanopore data. In this study, we have benchmarked the ability of different assemblers to reconstruct two different commercially-available mock communities that have been sequenced using Oxford Nanopore Technologies platforms. Among the tested tools, only metaFlye, Raven, and Canu performed well in all the datasets. These tools retrieved highly contiguous genomes (or even complete genomes) directly from the metagenomic data. Despite the intrinsic high error of nanopore sequencing, final assemblies reached high accuracy (~ 99.5 to 99.8% of consensus accuracy). Polishing strategies demonstrated to be necessary for reducing the number of indels, and this had an impact on the prediction of biosynthetic gene clusters. correction with high quality short reads did not always result in higher quality draft assemblies. Overall, nanopore metagenomic sequencing data-adapted to MinION's current output-proved sufficient for assembling and characterizing lowcomplexity microbial communities. Background Metagenomic sequencing has revolutionized the way we study and characterize microbial communities. This culture-independent technique based on shotgun sequencing has been applied in a broad range of biological fields, ranging from microbial ecology 1 to evolution 2 , or even clinical microbiology 3. In recent years, metagenomics has also become a powerful tool for recovering individual genomes directly from complex microbiomes 2,4,5 , leading to the identification and description of new-and mostly unculturable-taxa with meaningful implications 6. Illumina has been the most widely used platform for metagenomic studies. Illumina reads are characterized by their short length (75-300 bp) and high accuracy (~ 0.1% of basecalling errors) 7. When performing de novo assemblies, Illumina sequences often result in highly fragmented genomes, even when sequencing pure cultures 8,9. This is a consequence of the inability to correctly assemble genomic regions containing repetitive elements that are longer than the read length 9. This fragmentation problem is magnified when handling metagenomic sequences due to the existence of intergenomic repeats that are shared by more than one taxon present in the microbial community 10. It has to be noted that microbial communities often contain related species or sub-species in different-and unknown-abundances, resulting in extensive intergenomic overlaps that can hinder the assembly process 11,12. Third generation sequencing platforms have recently emerged as a solution to resolve ambiguous repetitive regions and to improve genome contiguity. Despite the considerable error associated to these te...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.