The apocarotenoid zaxinone promotes growth and suppresses strigolactone biosynthesis in rice. To shed light on the mechanisms underlying its growth-promoting effect, we employed a combined omics approach integrating transcriptomics and metabolomics analysis of rice seedlings treated with zaxinone, and determined the resulting changes at the cellular and hormonal levels. Metabolites as well as transcripts analysis demonstrate that zaxinone application increased sugar content and triggered glycolysis, the tricarboxylic acid cycle and other sugar-related metabolic processes in rice roots. In addition, zaxinone treatment led to an increased root starch content and induced glycosylation of cytokinins. The transcriptomic, metabolic and hormonal changes were accompanied by striking alterations of roots at cellular level, which showed an increase in apex length, diameter, and the number of cells and cortex cell layers. Remarkably, zaxinone did not affect the metabolism of roots in a strigolactone deficient mutant, suggesting an essential role of strigolactone in the zaxinone growth-promoting activity. Taken together, our results unravel zaxinone as a global regulator of the transcriptome and metabolome, as well as of hormonal and cellular composition of rice roots. Moreover, they suggest that zaxinone promotes rice growth most likely by increasing sugar uptake and metabolism, and reinforce the potential of this compound in increasing rice performance.
The Oryza sativa (rice) carotenoid cleavage dioxygenase OsZAS was described to produce zaxinone, a plant growth-promoting apocarotenoid. A zas mutant line showed reduced arbuscular mycorrhizal (AM) colonization, but the mechanisms underlying this behavior are unknown. Here, we investigated how OsZAS and exogenous zaxinone treatment regulate mycorrhization. Micromolar exogenous supply of zaxinone rescued root growth but not the mycorrhizal defects of the zas mutant, and even reduced mycorrhization in wildtype and zas genotypes. The zas line did not display the increase in the level of strigolactones (SLs) that was observed in wild-type plants at 7 days post-inoculation with AM fungus. Moreover, exogenous treatment with the synthetic SL analog GR24 rescued the zas mutant mycorrhizal phenotype, indicating that the lower AM colonization rate of zas is caused by a deficiency in SLs at the early stages of the interaction, and indicating that during this phase OsZAS activity is required to induce SL production, possibly mediated by the Dwarf14-Like (D14L) signaling pathway. OsZAS is expressed in arbuscule-containing cells, and OsPT11prom::OsZAS transgenic lines, where OsZAS expression is driven by the OsPT11 promoter active in arbusculated cells, exhibit increased mycorrhization compared with the wild type. Overall, our results show that the genetic manipulation of OsZAS activity in planta leads to a different effect on AM symbiosis from that of exogenous zaxinone treatment, and demonstrate that OsZAS influences the extent of AM colonization, acting as a component of a regulatory network that involves SLs.
Carotenoid cleavage, catalyzed by CAROTENOID CLEAVAGE DIOXYGENASEs (CCDs), provides signaling molecules and precursors of plant hormones. Recently, we showed that zaxinone, a apocarotenoid metabolite formed by the CCD ZAXINONE SYNTHASE (ZAS), is a growth regulator required for normal rice (Oryza sativa) growth and development. The rice genome encodes three OsZAS homologs, called here OsZAS1b, OsZAS1c, and OsZAS2, with unknown functions. Here, we investigated the enzymatic activity, expression pattern, and subcellular localization of OsZAS2 and generated and characterized loss-of-function CRISPR/Cas9-Oszas2 mutants. We show that OsZAS2 formed zaxinone in vitro. OsZAS2 was predominantly localized in plastids and mainly expressed under phosphate starvation. Moreover, OsZAS2 expression increased during mycorrhization, specifically in arbuscule-containing cells. Oszas2 mutants contained lower zaxinone content in roots and exhibited reduced root and shoot biomass, fewer tillers, and higher strigolactone (SL) levels. Exogenous zaxinone application repressed SL biosynthesis and partially rescued the growth retardation of the Oszas2 mutant. Consistent with the OsZAS2 expression pattern, Oszas2 mutants displayed a lower frequency of AM colonization. In conclusion, OsZAS2 is a zaxinone-forming enzyme that, similar to previously reported OsZAS, determines rice growth, architecture and SL content and is required for optimal mycorrhization.
Durum wheat is one of the most important agricultural crops, currently providing 18% of the daily intake of calories and 20% of daily protein intake for humans. However, being wheat that is cultivated in arid and semiarid areas, its productivity is threatened by drought stress, which is being exacerbated by climate change. Therefore, the identification of drought tolerant wheat genotypes is critical for increasing grain yield and also improving the capability of crops to uptake and assimilate nutrients, which are seriously affected by drought. This work aimed to determine the effect of arbuscular mycorrhizal fungi (AMF) on plant growth under normal and limited water availability in two durum wheat genotypes (Svevo and Etrusco). Furthermore, we investigated how the plant nutritional status responds to drought stress. We found that the response of Svevo and Etrusco to drought stress was differentially affected by AMF. Interestingly, we revealed that AMF positively affected sulfur homeostasis under drought conditions, mainly in the Svevo cultivar. The results provide a valuable indication that the identification of drought tolerant plants cannot ignore their nutrient use efficiency or the impact of other biotic soil components (i.e., AMF).
Strigolactones (SLs) regulate many developmental processes, including shoot-branching/tillering, and mediate rhizospheric interactions. SLs are structurally diverse, divided into a canonical and a non-canonical sub-family. To better understand the biological function of particular SLs, we generated CRISPR/Cas9 mutants disrupted in OsMAX1-1400 or OsMAX1-1900, which encode cytochrome P450 enzymes (CYP711A clade) contributing to SL diversity. The disruption of OsMAX1-1900 did neither affect the SL pattern nor plant architecture, indicating a functional redundancy. In contrast, disruption of OsMAX1-1400 activity, a 4-deoxyorobanchol hydroxylase, led to a complete lack of orobanchol and an accumulation of its precursor 4-deoxyorobanchol (4DO), both of which are a canonical SLs common in different plant species, accompanied by higher levels of the non-canonical methyl 4-oxo-carlactonoate (4-oxo-MeCLA). Os1400 mutants showed also shorter plant height, panicle and panicle base length, but did not exhibit a tillering phenotype. Hormone quantification and transcriptome analysis revealed elevated auxin levels and changes in the expression of auxin-related, as well as of SL biosynthetic genes. Interestingly, the Os900/1400 double mutant lacking both orobanchol and 4DO did not show the observed Os1400 architectural phenotypes, indicating that they are a result of 4DO accumulation. A comparison of the mycorrhization and Striga seed germinating activity of Os900, Os900/1400, and Os1400 loss-of-function mutants demonstrates that the germination activity positively correlates with 4DO content while disrupting OsMAX1-1400 negatively impact mycorrhizal symbiosis. Taken together, our paper deciphers the biological function of canonical SLs in rice and depicts their particular contributions to establishing architecture and rhizospheric communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.