Effacement of podocyte foot processes occurs in many proteinuric nephropathies and is accompanied by rearrangement of the actin cytoskeleton. Here, we studied whether protein overload affects intracellular pathways, leading to cytoskeletal architecture changes and ultimately to podocyte dysfunction. Mouse podocytes bound and endocytosed both albumin and IgG via receptor-specific mechanisms. Protein overload caused redistribution of F-actin fibers instrumental to up-regulation of the prepro-endothelin (ET)-1 gene and production of the corresponding peptide. Increased DNA-binding activity for nuclear factor (NF)-kappaB and Ap-1 nuclear proteins was measured in nuclear extracts of podocytes exposed to excess proteins. Both Y27632, which inhibits Rho kinase-dependent stress fiber formation, and jasplakinolide, an F-actin stabilizer, decreased NF-kappaB and Ap-1 activity and reduced ET-1 expression. This suggested a role for the cytoskeleton, through activated Rho, in the regulation of the ET-1 peptide. Focal adhesion kinase (FAK), an integrin-associated nonreceptor tyrosine kinase, was phosphorylated by albumin treatment via Rho kinase-triggered actin reorganization. FAK activation led to NF-kappaB- and Ap-1-dependent ET-1 expression. These data suggest that reorganization of the actin cytoskeletal network in response to protein load is implicated in modulation of the ET-1 gene via Rho kinase-dependent FAK activation of NF-kappaB and Ap-1 in differentiated podocytes. Increased ET-1 generation might alter glomerular permselectivity and amplify the noxious effect of protein overload on dysfunctional podocytes.
Abstract. The current therapy for chronic proteinuric nephropathies is angiotensin-converting enzyme inhibitors (ACEi), which slow, but may not halt, the progression of disease, and which may be not effective to the same degree in all patients. In accelerated passive Heymann nephritis (PHN), this study assessed the effect of combining ACEi with angiotensin II receptor antagonist (AIIRA) and with statin that, besides lowering cholesterol, influences inflammatory and fibrogenic processes. Uninephrectomized PHN rats were divided into four groups (n ϭ 10 each) and daily given oral doses of the following: vehicle; 40 mg/L lisinopril; 100 mg/L lisinopril plus L-158,809; 0.3 mg/kg lisinopril plus L-158,809 plus cerivastatin. Treatments started at 2 mo when rats had massive proteinuria and signs of renal injury and lasted until 10 mo. Increases in BP were equally lowered by treatments. ACEi kept proteinuria at levels comparable to pretreatment and numerically lower than vehicle. The addition of AIIRA to lisinopril was more effective, being proteinuria reduced below pretreatment values and significantly lower than vehicle. When cerivastatin was added on top of ACE inhibition and AIIR blockade, urinary protein regressed to normal values and renal failure was prevented. Renal ACE activity was increased threefold in PHN, it was inhibited by more than 60% after ACEi, and decreased below control values with triple therapy. Cerivastatin inhibited ACE activity by 30%. Glomerulosclerosis, tubular damage and interstitial inflammation were ameliorated by ACEi alone or combined with AIIRA, and prevented by addition of statin. TGF- 1 mRNA upregulation in PHN kidney was partially reduced after ACEi or combined with AIIRA and almost normalized after adding statin. Cerivastatin inhibited TGF- 1 gene upregulation by 25%. These data suggest a possible future strategy to induce remission of proteinuria, lessen renal injury, and protect from loss of function in those patients who do not fully respond to ACEi therapy.
Chronic diseases of the kidney have a progressive course toward organ failure. Common pathway mechanisms of progressive injury, irrespectively of the etiology of the underlying diseases, include glomerular capillary hypertension and enhanced passage of plasma proteins across the glomerular capillary barrier because of impaired permselective function. These changes are associated with podocyte injury and glomerular sclerosis. Direct evidence for causal roles is lacking, particularly for the link between intraglomerular protein deposition and sclerosing reaction. Because transforming growth factor-beta1 (TGF-beta1) is the putative central mediator of scarring, we hypothesized that TGF-beta1 can be up-regulated by protein overload of podocytes thereby contributing to sclerosis. In rats with renal mass reduction, protein accumulation in podocytes as a consequence of enhanced transcapillary passage preceded podocyte dedifferentiation and injury, increase in TGF-beta1 expression in podocytes, and TGF-beta1-dependent activation of mesangial cells. Angiotensin-converting enzyme inhibitor prevented both accumulation of plasma proteins and TGF-beta1 overexpression in podocytes and sclerosis. Albumin load on podocytes in vitro caused loss of the synaptopodin differentiation marker and enhanced TGF-beta1 mRNA and protein. Conditioned medium of albumin-stimulated podocytes induced a sclerosing phenotype in mesangial cells, an effect mimicked by TGF-beta1 and blocked by anti-TGF-beta1 antibodies. Thus, the passage of excess plasma proteins across the glomerular capillary wall is the trigger of podocyte dysfunction and of a TGF-beta1-mediated mechanism underlying sclerosis. Agents to reduce TGF-beta1, possibly combined with angiotensin blockade, should have priority in novel approaches to treatment of progressive nephropathies.
Abstract. Renin-angiotensin system (RAS) inhibitors are effective in reducing renal disease progression in early diabetic nephropathy, but they provide imperfect protection at a later stage. Due to the pivotal role of transforming growth factor- (TGF-) in the pathogenesis of diabetic kidney disease, this study tested the effect of simultaneously interrupting TGF- and angiotensin II on disease progression in diabetic rats with overt nephropathy. Diabetes was induced by streptozotocin injection in uninephrectomized rats. Diabetic rats received murine (1D11) or human anti-TGF- monoclonal antibodies alone or in combination with lisinopril, 13C4 irrelevant murine antibody, saline or lisinopril from month 4 (when animals had proteinuria) to month 8. Normal animals served as controls. Systolic BP increase was controlled by single treatments and even more by the combined therapies. 1D11 and lisinopril kept proteinuria at levels numerically lower than irrelevant antibody and saline, while CAT-192 was ineffective. The addition of either TGF- antibody to lisinopril normalized proteinuria. Consistent results were obtained for glomerulosclerosis and tubular damage, which were abrogated by the combined therapy. Interstitial volume expansion and infiltration of lymphocytes/macrophages were limited by 1D11 and lisinopril and further reduced by their combination. The increase of type III collagen in the renal interstitium was partially attenuated by 1D11 and lisinopril while normalized by their combination. It is concluded that anti-TGF- antibody when added to a background of chronic angiotensin-converting enzyme (ACE) inhibition fully arrests proteinuria and renal injury of overt diabetic nephropathy, providing a novel route to therapy and remission of disease for diabetic patients who do not respond to RAS inhibition. Diabetic nephropathy, a major long-term complication of diabetes mellitus, is the most common cause of end-stage renal disease requiring dialysis worldwide (1,2) and is becoming a staggering challenge to public healthcare systems due to the prohibitive costs of renal replacement therapy that could become unaffordable even for developed countries. Typical histologic features characterize diabetic nephropathy, including expansion of the extracellular matrix in the glomerular mesangium, thickening of glomerular and tubular membranes, and tubulointerstitial fibrosis, all of them contributing to the inexorable progressive deterioration of renal function (3).Among treatment options for diabetes, agents that inhibit the renin-angiotensin system (RAS) are particularly effective in reducing renal disease progression (4). This is not simply a function of the effect on systemic and glomerular hypertension, but it can be attributed to the unique property of this class of drugs of limiting excess protein ultrafiltration and its deleterious consequences (5). Angiotensin-converting enzyme inhibitor (ACEi) effectiveness, however, depends on timing of treatment. Experimental data in rats with streptozotocin-induced diabete...
Shigatoxin (Stx) is the offending agent of post-diarrheal hemolytic uremic syndrome, characterized by glomerular ischemic changes preceding microvascular thrombosis. Because podocytes are highly sensitive to Stx cytotoxicity and represent a source of vasoactive molecules, we studied whether Stx-2 modulated the production of endothelin-1 (ET-1), taken as candidate mediator of podocyte dysfunction. Stx-2 enhanced ET-1 mRNA and protein expression via activation of nuclear factor B (NF-B) and activator protein-1 (Ap-1) to the extent that transfection with the dominant-negative mutant of IB-kinase 2 or with Ap-1 decoy oligodeoxynucleotides reduced ET-1 mRNA levels. We propose a role for p38 and p42/44 mitogen-activated protein kinases (MAPKs) in mediating NF-B-dependent gene transcription induced by Stx-2, based on data that Stx-2 phosphorylated p38 and p42/44 MAPKs and that MAPK inhibitors reduced transcription of NF-B promoter/luciferase reporter gene construct induced by Stx-2. Stx-2 caused F-actin redistribution and intercellular gaps via production of ET-1 acting on ET A receptor, because cytoskeleton changes were prevented by ET A receptor blockade. Exogenous ET-1 induced cytoskeleton rearrangement and intercellular gaps via phosphatidylinositol-3 kinase and Rho-kinase pathway and increased protein permeability across the podocyte monolayer. These data suggest that the podocyte is a target of Stx, a novel stimulus for the synthesis of ET-1, which may control cytoskeleton remodeling and glomerular permeability in an autocrine fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.