Electrochemical immunosensors are affinity-based biosensors characterized by several useful features such as specificity, miniaturizability, low cost and simplicity, making them very interesting for many applications in several scientific fields. One of the significant issues in the design of electrochemical immunosensors is to increase the system’s sensitivity. Different strategies have been developed, one of the most common is the use of nanostructured materials as electrode materials, nanocarriers, electroactive or electrocatalytic nanotracers because of their abilities in signal amplification and biocompatibility. In this review, we will consider some of the most used nanostructures employed in the development of electrochemical immunosensors (e.g., metallic nanoparticles, graphene, carbon nanotubes) and many other still uncommon nanomaterials. Furthermore, their diagnostic applications in the last decade will be discussed, referring to two relevant issues of present-day: the detection of tumor markers and viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.