Blastomere fate and embryonic genome activation (EGA) during human embryonic development are unsolved areas of high scientific and clinical interest. Forty-nine blastomeres from 5- to 8-cell human embryos have been investigated following an efficient single-cell cDNA amplification protocol to provide a template for high-density microarray analysis. The previously described markers, characteristic of Inner Cell Mass (ICM) (n = 120), stemness (n = 190) and Trophectoderm (TE) (n = 45), were analyzed, and a housekeeping pattern of 46 genes was established. All the human blastomeres from the 5- to 8-cell stage embryo displayed a common gene expression pattern corresponding to ICM markers (e.g., DDX3, FOXD3, LEFTY1, MYC, NANOG, POU5F1), stemness (e.g., POU5F1, DNMT3B, GABRB3, SOX2, ZFP42, TERT), and TE markers (e.g., GATA6, EOMES, CDX2, LHCGR). The EGA profile was also investigated between the 5-6- and 8-cell stage embryos, and compared to the blastocyst stage. Known genes (n = 92) such as depleted maternal transcripts (e.g., CCNA1, CCNB1, DPPA2) and embryo-specific activation (e.g., POU5F1, CDH1, DPPA4), as well as novel genes, were confirmed. In summary, the global single-cell cDNA amplification microarray analysis of the 5- to 8-cell stage human embryos reveals that blastomere fate is not committed to ICM or TE. Finally, new EGA features in human embryogenesis are presented.
Understanding the genetic and molecular mechanisms of ovarian cancer has been the focus of research efforts working toward the greater goal of improving cancer therapy for patients with residual disease after initial treatment with conventional surgery and neoadjuvant chemotherapy. The focus of this review will be centered on new therapeutic strategies based on Cancer Stem Cells studies of chemoresistant subpopulations, the prevention of metastasis, and individualized therapy in order to find the most successful combination of treatments to effectively treat human ovarian cancer. We reviewed recent literature (1993-2011) of novel treatment approaches to ovarian cancer stem cells. As the focus of ovarian cancer investigation has centered on the cancer stem cell model and the complexities that it presents in the development of effective treatments, the future of treating ovarian cancer lies in utilizing individualized treatment systems that include enhancing existing treatments, aiming for novel therapy targets, managing the plasticity of stem cells to induce cellular differentiation, and regulating oncogenic signaling pathways.
The stem cell field owes a great deal to the previous work conducted by embryologists and researchers devoted to reproductive medicine. The time is coming when this emerging field will pay off in the reproductive sciences by offering new avenues of understanding gametogenesis and early embryonic development. Human embryonic stem cells are pluripotent cells that proliferate in vitro while maintaining an undifferentiated state, and they are capable of differentiating into most cell types under appropriate conditions. Embryo-friendly approaches have been developed as new methods of obtaining human embryonic stem cells without destroying the embryo. Somatic stem cells have been identified and isolated from numerous adult organs and tissues to create a multipotent and autologous source of cells with established medical indications. Cell reprogramming is now a scientific fact, and induced pluripotent cells, a new pluripotent cell type, have been generated by the overexpression of specific genes from a myriad of differentiated adult cell types. Cancer is now considered a stem cell disease. Cancer stem cells share numerous features with normal stem cells including hallmarks properties such as self-renewal and undifferentiation. Therefore, the actual focus of ovarian cancer research on the cancer stem cell model should generate efficient and personalized treatment designs to improve treatment efficiency.
The putative existence of a cancer stem cell niche consisting of bi-directional stromal and stem cell secreting factors that trigger cancer stem cell growth and proliferation has been hypothesized in the nervous and hematopoietic systems. In light of this theory, it has been proposed that embryonic stem cell microenvironments, upon interactions with cancer stem cells, may reprogram cancer cells resulting in a substantial inhibition of tumor cell properties. Here, we discuss emerging data that support this novel concept of cancer inhibitory factors produced in the context of embryonic microenvironments as well as by embryonic stem cells (ESCs).
Differentiation therapy pursues the discovery of novel molecules to transform cancer progression into less aggressive phenotypes by mechanisms involving enforced cell transdifferentiation. In this study, we examined the identification of transdifferentiating adipogenic programs in human cancer cell lines (HCCLs). Our findings showed that specific unsatturated fatty acids, such as palmitoleic, oleic and linoleic acids, trigger remarkable phenotypic modifications in a large number of human cancer cell lines (HCCLs), including hepatocarcinoma HUH-7, ovarian carcinoma SK-OV-3, breast adenocarcinoma MCF-7 and melanoma MALME-3M. In particular, we characterized a massive biogenesis of lipid droplets (LDs) and up-regulation of the adipogenic master regulator, PPARG, resulting in the transdifferentiation of HCCLs into adipocyte-like cells. These findings suggest the possibility of a novel strategy in cancer differentiation therapy via switching the identity of HCCLs to an adipogenic phenotype through unsaturated fatty acid-induced transdifferentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.