Today there are two main vector processors design trends. On the one hand, we have vector processors designed for long vectors lengths such as the SX-Aurora TSUBASA which implements vector lengths of 256 elements (16384-bits). On the other hand, we have vector processors designed for short vectors such as the Fujitsu A64FX that implements vector lengths of 8 elements (512-bit) ARM SVE. However, short vector designs are the most widely adopted in modern chips. This is because, to achieve high-performance with a very high-efficiency, applications executed on long vector designs must feature abundant DLP, then limiting the range of applications. On the contrary, short vector designs are compatible with a larger range of applications. In fact, in the beginnings, long vector length implementations were focused on the HPC market, while short vector length implementations were conceived to improve performance in multimedia tasks. However, those short vector length extensions have evolved to better fit the needs of modern applications. In that sense, we believe that this compatibility with a large range of applications featuring high, medium and low DLP is one of the main reasons behind the trend of building parallel machines with short vectors. Short vector designs are area efficient and are "compatible" with applications having long vectors; however, these short vector architectures are not as efficient as longer vector designs when executing high DLP code. In this thesis, we propose a novel vector architecture that combines the area and resource efficiency characterizing short vector processors with the ability to handle large DLP applications, as allowed in long vector architectures. In this context, we present AVA, an Adaptable Vector Architecture designed for short vectors (MVL = 16 elements), capable of reconfiguring the MVL when executing applications with abundant DLP, achieving performance comparable to designs for long vectors. The design is based on three complementary concepts. First, a two-stage renaming unit based on a new type of registers termed as Virtual Vector Registers (VVRs), which are an intermediate mapping between the conventional logical and the physical and memory registers. In the first stage, logical registers are renamed to VVRs, while in the second stage, VVRs are renamed to physical registers. Second, a two-level VRF, that supports 64 VVRs whose MVL can be configured from 16 to 128 elements. The first level corresponds to the VVRs mapped in the physical registers held in the 8KB Physical Vector Register File (P-VRF), while the second level represents the VVRs mapped in memory registers held in the Memory Vector Register File (M-VRF). While the baseline configuration (MVL=16 elements) holds all the VVRs in the P-VRF, larger MVL configurations hold a subset of the total VVRs in the P-VRF, and map the remaining part in the M-VRF. Third, we propose a novel two-stage vector issue unit. In the first stage, the second level of mapping between the VVRs and physical registers is performed, while issuing to execute is managed in the second stage. This thesis also presents a set of tools for designing and evaluating vector architectures. First, a parameterizable vector architecture model implemented on the gem5 simulator to evaluate novel ideas on vector architectures. Second, a Vector Architecture model implemented on the McPAT framework to evaluate power and area metrics. Finally, the RiVEC benchmark suite, a collection of ten vectorized applications from different domains focusing on benchmarking vector microarchitectures. Hoy en día existen dos tendencias principales en el diseño de procesadores vectoriales. Por un lado, tenemos procesadores vectoriales basados en vectores largos como el SX-Aurora TSUBASA que implementa vectores con 256 elementos (16384-bits) de longitud. Por otro lado, tenemos procesadores vectoriales basados en vectores cortos como el Fujitsu A64FX que implementa vectores de 8 elementos (512-bits) de longitud ARM SVE. Sin embargo, los diseños de vectores cortos son los más adoptados en los chips modernos. Esto es porque, para lograr alto rendimiento con muy alta eficiencia, las aplicaciones ejecutadas en diseños de vectores largos deben presentar abundante paralelismo a nivel de datos (DLP), lo que limita el rango de aplicaciones. Por el contrario, los diseños de vectores cortos son compatibles con un rango más amplio de aplicaciones. En sus orígenes, implementaciones basadas en vectores largos estaban enfocadas al HPC, mientras que las implementaciones basadas en vectores cortos estaban enfocadas en tareas de multimedia. Sin embargo, esas extensiones basadas en vectores cortos han evolucionado para adaptarse mejor a las necesidades de las aplicaciones modernas. Creemos que esta compatibilidad con un mayor rango de aplicaciones es una de las principales razones de construir máquinas paralelas basadas en vectores cortos. Los diseños de vectores cortos son eficientes en área y son compatibles con aplicaciones que soportan vectores largos; sin embargo, estos diseños de vectores cortos no son tan eficientes como los diseños de vectores largos cuando se ejecuta un código con alto DLP. En esta tesis, proponemos una novedosa arquitectura vectorial que combina la eficiencia de área y recursos que caracteriza a los procesadores vectoriales basados en vectores cortos, con la capacidad de mejorar en rendimiento cuando se presentan aplicaciones con alto DLP, como lo permiten las arquitecturas vectoriales basadas en vectores largos. En este contexto, presentamos AVA, una Arquitectura Vectorial Adaptable basada en vectores cortos (MVL = 16 elementos), capaz de reconfigurar el MVL al ejecutar aplicaciones con abundante DLP, logrando un rendimiento comparable a diseños basados en vectores largos. El diseño se basa en tres conceptos. Primero, una unidad de renombrado de dos etapas basada en un nuevo tipo de registros denominados registros vectoriales virtuales (VVR), que son un mapeo intermedio entre los registros lógicos y físicos y de memoria. En la primera etapa, los registros lógicos se renombran a VVR, mientras que, en la segunda etapa, los VVR se renombran a registros físicos. En segundo lugar, un VRF de dos niveles, que admite 64 VVR cuyo MVL se puede configurar de 16 a 128 elementos. El primer nivel corresponde a los VVR mapeados en los registros físicos contenidos en el banco de registros vectoriales físico (P-VRF) de 8 KB, mientras que el segundo nivel representa los VVR mapeados en los registros de memoria contenidos en el banco de registros vectoriales de memoria (M-VRF). Mientras que la configuración de referencia (MVL=16 elementos) contiene todos los VVR en el P-VRF, las configuraciones de MVL más largos contienen un subconjunto del total de VVR en el P-VRF y mapean la parte restante en el M-VRF. En tercer lugar, proponemos una novedosa unidad de colas de emisión de dos etapas. En la primera etapa se realiza el segundo nivel de mapeo entre los VVR y los registros físicos, mientras que en la segunda etapa se gestiona la emisión de instrucciones a ejecutar. Esta tesis también presenta un conjunto de herramientas para diseñar y evaluar arquitecturas vectoriales. Primero, un modelo de arquitectura vectorial parametrizable implementado en el simulador gem5 para evaluar novedosas ideas. Segundo, un modelo de arquitectura vectorial implementado en McPAT para evaluar las métricas de potencia y área. Finalmente, presentamos RiVEC, una colección de diez aplicaciones vectorizadas enfocadas en evaluar arquitecturas vectoriales
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.