Providing therapies tailored to each patient is the vision of precision medicine, enabled by the increasing ability to capture extensive data about individual patients. In this position paper, we argue that the second enabling pillar towards this vision is the increasing power of computers and algorithms to learn, reason, and build the ‘digital twin’ of a patient. Computational models are boosting the capacity to draw diagnosis and prognosis, and future treatments will be tailored not only to current health status and data, but also to an accurate projection of the pathways to restore health by model predictions. The early steps of the digital twin in the area of cardiovascular medicine are reviewed in this article, together with a discussion of the challenges and opportunities ahead. We emphasize the synergies between mechanistic and statistical models in accelerating cardiovascular research and enabling the vision of precision medicine.
Cardiac anatomy plays a crucial role in determining cardiac function. However, there is a poor understanding of how specific and localised anatomical changes affect different cardiac functional outputs. In this work, we test the hypothesis that in a statistical shape model (SSM), the modes that are most relevant for describing anatomy are also most important for determining the output of cardiac electromechanics simulations. We made patient-specific four-chamber heart meshes (n = 20) from cardiac CT images in asymptomatic subjects and created a SSM from 19 cases. Nine modes captured 90% of the anatomical variation in the SSM. Functional simulation outputs correlated best with modes 2, 3 and 9 on average (R = 0.49 ± 0.17, 0.37 ± 0.23 and 0.34 ± 0.17 respectively). We performed a global sensitivity analysis to identify the different modes responsible for different simulated electrical and mechanical measures of cardiac function. Modes 2 and 9 were the most important for determining simulated left ventricular mechanics and pressure-derived phenotypes. Mode 2 explained 28.56 ± 16.48% and 25.5 ± 20.85, and mode 9 explained 12.1 ± 8.74% and 13.54 ± 16.91% of the variances of mechanics and pressure-derived phenotypes, respectively. Electrophysiological biomarkers were explained by the interaction of 3 ± 1 modes. In the healthy adult human heart, shape modes that explain large portions of anatomical variance do not explain equivalent levels of electromechanical functional variation. As a result, in cardiac models, representing patient anatomy using a limited number of modes of anatomical variation can cause a loss in accuracy of simulated electromechanical function.
Deep learning can bring time savings and increased reproducibility to medical image analysis. However, acquiring training data is challenging due to the time-intensive nature of labeling and high inter-observer variability in annotations. Rather than labeling images, in this work we propose an alternative pipeline where images are generated from existing high-quality annotations using generative adversarial networks (GANs). Annotations are derived automatically from previously built anatomical models and are transformed into realistic synthetic ultrasound images with paired labels using a CycleGAN. We demonstrate the pipeline by generating synthetic 2D echocardiography images to compare with existing deep learning ultrasound segmentation datasets. A convolutional neural network is trained to segment the left ventricle and left atrium using only synthetic images. Networks trained with synthetic images were extensively tested on four different unseen datasets of real images with median Dice scores of 91, 90, 88, and 87 for left ventricle segmentation. These results match or are better than inter-observer results measured on real ultrasound datasets and are comparable to a network trained on a separate set of real images. Results demonstrate the images produced can effectively be used in place of real data for training. The proposed pipeline opens the door for automatic generation of training data for many tasks in medical imaging as the same process can be applied to other segmentation or landmark detection tasks in any modality. The source code and anatomical models are available to other researchers. 1 1
Computational Fluid Dynamics (CFD) is used to assist in designing artificial valves and planning procedures, focusing on local flow features. However, assessing the impact on overall cardiovascular function or predicting longer-term outcomes may requires more comprehensive whole heart CFD models. Fitting such models to patient data requires numerous computationally expensive simulations, and depends on specific clinical measurements to constrain model parameters, hampering clinical adoption. Surrogate models can help to accelerate the fitting process while accounting for the added uncertainty. We create a validated patient-specific four-chamber heart CFD model based on the Navier-Stokes-Brinkman (NSB) equations and test Gaussian Process Emulators (GPEs) as a surrogate model for performing a variance-based global sensitivity analysis (GSA). GSA identified preload as the dominant driver of flow in both the right and left side of the heart, respectively. Left-right differences were seen in terms of vascular outflow resistances, with pulmonary artery resistance having a much larger impact on flow than aortic resistance. Our results suggest that GPEs can be used to identify parameters in personalized whole heart CFD models, and highlight the importance of accurate preload measurements.
We study time series generated by the parametric family of fractional discrete maps introduced by Wu and Baleanu in [34], presenting an alternative way of introducing these maps. For the values of the parameters that yield chaotic time series, we have studied the Shannon entropy of the degree distribution of the natural and horizontal visibility graphs associated to these series. In these cases, the degree distribution can be fitted with a power law. We have also compared the Shannon entropy and the exponent of the power law fitting for the different values of the fractionary exponent and the scaling factor of the model. Our results illustrate a connection between the fractionary exponent and the scaling factor of the maps, with the respect to the onset of the chaos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.