Four-dimensional gauge theories with matter can have regions in parameter space, often dubbed conformal windows, where they flow in the infrared to non-trivial conformal field theories. It has been conjectured that conformality can be lost because of merging of two nearby fixed points that move into the complex plane, and that a walking dynamics governed by scaling dimensions of operators defined at such complex fixed points can occur. We find controlled, parametrically weakly-coupled, and ultraviolet-complete 4d gauge theories that explicitly realize this scenario. We show how the walking dynamics is controlled by the coupling of a double-trace operator that crosses marginality. The walking regime ends when the renormalization group flow of this coupling leads to a (weak) first-order phase transition with Coleman-Weinberg symmetry breaking. A light dilaton-like scalar particle appears in the spectrum, but it is not parametrically lighter than the other excitations.
We perform a detailed study of a class of irregular correlators in Liouville Conformal Field Theory, of the related Virasoro conformal blocks with irregular singularities and of their connection formulae. Upon considering their semi-classical limit, we provide explicit expressions of the connection matrices for the Heun function and a class of its confluences. Their calculation is reduced to concrete combinatorial formulae from conformal block expansions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.