The aim of this study was to determine the principal developmental stages in the formation of the excretory lacrimal system in humans and to establish its morphogenetic period. The study was performed using light microscopy on serial sections of 51 human specimens: 33 embryos and 18 fetuses ranging from 8 to 137 mm crown-rump length (CR; 5-16 weeks of development). Three stages were identified in the morphogenesis of the excretory lacrimal system: (1) the formative stage of the lacrimal lamina (Carnegie stages 16-18); (2) the formative stage of the lacrimal cord (Carnegie stages 19-23); and (3) the maturative stage of the excretory lacrimal system, from the 9th week of development onward. A three-dimensional reconstruction of the excretory lacrimal system was performed from serial sections of an embryo at the end of the embryonic period (27 mm CR).
The aim of this study was to determine the main stages of the lacrimal gland's developmental process in humans and to establish its precise morphogenetic timetable. Its onset is generally assumed to take place at O'Rahilly's stage 21, arising from an epithelial thickening of the superior extreme of the temporary conjunctival fornix. However, the present study points to a prior stage in the process: the presence of epithelial-mesenchymal changes in embryos at O'Rahilly's stage 19. The study was performed using light microscopy on serial sections of 37 human specimens: 23 embryos and 14 fetuses ranging from 15 to 137 mm crown-rump length (7-116 weeks of development). Three stages in lacrimal gland morphogenesis were identified: (1) the presumptive glandular stage, O'Rahilly's stages 19 -20, characterized by a thickening of the superior fornix epithelium together with surrounding mesenchymal condensation; (2) the bud stage, generally assumed to be the first manifestation of glandular origin, characterized initially by the appearance of nodular formations in the region of the superior conjunctival fornix and concluding with the appearance of lumina within the epithelial buds; and (3) the glandular maturity stage, weeks 9 -16, the period in which the gland begins to take on the morphology of adulthood.
This study analyses some morphological and histological aspects that could have a role in the development of the condylar cartilage (CC). The specimens used were serial sections from 49 human fetuses aged 10-15 weeks. In addition, 3D reconstructions of the mandibular ramus and the CC were made from four specimens. During weeks 10-11 of development, the vascular canals (VC) appear in the CC and the intramembranous ossification process begins. At the same time, in the medial region of the CC, chondroclasts appear adjacent to the vascular invasion and to the cartilage destruction. During weeks 12-13 of development, the deepest portion of the posterolateral vascular canal is completely surrounded by the hypertrophic chondrocytes. The latter emerge with an irregular layout. During week 15 of development, the endochondral ossification of the CC begins. Our results suggest that the situation of the chondroclasts, the posterolateral vascular canal and the irregular arrangement of the hypertrophic chondrocytes may play a notable role in the development of the CC.
There is controversy regarding the description of the different regions of the face of the superficial musculoaponeurotic system (SMAS) and its relationship with the superficial mimetic muscles. The purpose of this study is to analyze the development of the platysma muscle and the SMAS in human specimens at 8–17 weeks of development using an optical microscope. Furthermore, we propose to study the relationship of the anlage of the SMAS and the neighbouring superficial mimetic muscles. The facial musculature derives from the mesenchyme of the second arch and migrates towards the different regions of the face while forming premuscular laminae. During the 8th week of development, the cervical, infraorbital, mandibular, and temporal laminae are observed to be on the same plane. The platysma muscle derives from the cervical lamina and its mandibular extension enclosing the lower part of the parotid region and the cheek, while the SMAS derives from the upper region. During the period of development analyzed in this study, we have observed no continuity between the anlage of the SMAS and that of the superficial layer of the temporal fascia and the zygomaticus major muscle. Nor have we observed any structure similar to the SMAS in the labial region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.