We describe a two-dimensional thermal proteome profiling strategy that can be combined with an orthogonal chemoproteomics approach to enable comprehensive target profiling of the marketed histone deacetylase inhibitor panobinostat. The N-hydroxycinnamide moiety is identified as critical for potent and tetrahydrobiopterin-competitive inhibition of phenylalanine hydroxylase leading to increases in phenylalanine and decreases in tyrosine levels. These findings provide a rationale for adverse clinical observations and suggest repurposing of the drug for treatment of tyrosinemia.
Mammalian phenylalanine hydroxylase (PheH) is an allosteric enzyme that catalyzes the first step in the catabolism of the amino acid phenylalanine. Following allosteric activation by high phenylalanine levels, the enzyme catalyzes the pterin-dependent conversion of phenylalanine to tyrosine. Inability to control elevated phenylalanine levels in the blood leads to increased risk of mental disabilities commonly associated with the inherited metabolic disorder, phenylketonuria. Although extensively studied, structural changes associated with allosteric activation in mammalian PheH have been elusive. Here, we examine the complex allosteric mechanisms of rat PheH using X-ray crystallography, isothermal titration calorimetry (ITC), and small-angle X-ray scattering (SAXS). We describe crystal structures of the pre-activated state of the PheH tetramer depicting the regulatory domains docked against the catalytic domains and preventing substrate binding. Using SAXS, we further describe the domain movements involved in allosteric activation of PheH in solution and present the first demonstration of chromatography-coupled SAXS with Evolving Factor Analysis (EFA), a powerful method for separating scattering components in a model-independent way. Together, these results support a model for allostery in PheH in which phenylalanine stabilizes the dimerization of the regulatory domains and exposes the active site for substrate binding and other structural changes needed for activity.
Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein’s regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The kcat/Kphe value is down 104 for the mutant enzyme, and the Km value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.
An intimate link exists between circadian clocks and metabolism with nearly every metabolic pathway in the mammalian liver under circadian control. Circadian regulation of metabolism is largely driven by rhythmic transcriptional activation of clock-controlled genes. Among these output genes, Nocturnin (Noct) has one of the highest amplitude rhythms at the mRNA level. The Noct gene encodes a protein (NOC) that is highly conserved with the endonuclease/exonuclease/phosphatase (EEP) domain-containing CCR4 family of deadenylases, but highly purified NOC possesses little or no ribonuclease activity. Here, we show that NOC utilizes the dinucleotide NADP(H) as a substrate, removing the 2′ phosphate to generate NAD(H), and is a direct regulator of oxidative stress response through its NADPH 2′ phosphatase activity. Furthermore, we describe two isoforms of NOC in the mouse liver. The cytoplasmic form of NOC is constitutively expressed and associates externally with membranes of other organelles, including the endoplasmic reticulum, via N-terminal glycine myristoylation. In contrast, the mitochondrial form of NOC possesses high-amplitude circadian rhythmicity with peak expression level during the early dark phase. These findings suggest that NOC regulates local intracellular concentrations of NADP(H) in a manner that changes over the course of the day.
The naturally occurring R68S substitution of phenylalanine hydroxylase (PheH) causes phenylketonuria (PKU). However, the molecular basis for how the R68S variant leads to PKU remains unclear. Kinetic characterization of R68S PheH establishes that the enzyme is fully active in the absence of allosteric binding of phenylalanine, in contrast to the WT enzyme. Analytical ultracentrifugation establishes that the isolated regulatory domain of R68S PheH is predominantly monomeric in the absence of phenylalanine and dimerizes in its presence, similar to the regulatory domain of the WT enzyme. Fluorescence and small-angle X-ray scattering analyses establish that the overall conformation of the resting form of R68S PheH is different from that of the WT enzyme. The data are consistent with the substitution disrupting the interface between the catalytic and regulatory domains of the enzyme, shifting the equilibrium between the resting and activated forms ϳ200-fold, so that the resting form of R68S PheH is ϳ70% in the activated conformation. However, R68S PheH loses activity 2 orders of magnitude more rapidly than the WT enzyme at 37°C and is significantly more sensitive to proteolysis. We propose that, even though this substitution converts the enzyme to a constitutively active enzyme, it results in PKU because of the decrease in protein stability. cro ARTICLE
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.