Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.
Butterflies are a diverse and charismatic insect group that are thought to have diversified via coevolution with plants and in response to dispersals following key geological events. These hypotheses have been poorly tested at the macroevolutionary scale because a comprehensive phylogenetic framework and datasets on global distributions and larval hosts of butterflies are lacking. We sequenced 391 genes from nearly 2,000 butterfly species to construct a new, phylogenomic tree of butterflies representing 92% of all genera and aggregated global distribution records and larval host datasets. We found that butterflies likely originated in what is now the Americas, ~100 Ma, shortly before the Cretaceous Thermal Maximum, then crossed Beringia and diversified in the Paleotropics. The ancestor of modern butterflies likely fed on Fabaceae, and most extant families were present before the K/Pg extinction. The majority of butterfly dispersals occurred from the tropics (especially the Neotropics) to temperate zones, largely supporting a "cradle" pattern of diversification. Surprisingly, host breadth changes and shifts to novel host plants had only modest impacts.
The species of the riffle beetle subfamily Larainae occurring in Venezuela are revised. Examination of 756 specimens yielded 22 species in nine genera occurring throughout the country. Seven species are newly recorded from the country: Phanoceroides sp. 1, Phanocerus clavicornis Sharp, 1882, Phanocerus congener Grouvelle, 1898, Pharceonus volcanus Spangler & Santiago-Fragoso, 1992, Disersus dasycolus Spangler & Santiago-Fragoso, 1992, Disersus chibcha Spangler & Santiago-Fragoso, 1987, and Disersus inca Spangler & Santiago-Fragoso, 1992. Nine species are found to be new to science, which are here described: Hexanchorus dentitibialis sp. n., H. falconensis sp. n., H. flintorum sp. n., H. homaeotarsoides sp. n., H. inflatus sp. n., Phanocerus rufus sp. n., Pharceonus grandis sp. n., Pharceonus ariasi sp. n., Potamophilops bostrychophallus sp. n. Additionally, a key to species, distribution maps, and photographs and genitalia illustrations are provided for all species.
We present an economical imaging system with integrated hardware and software to capture multispectral images of Lepidoptera with high efficiency. This method facilitates the comparison of colors and shapes among species at fine and broad taxonomic scales and may be adapted for other insect orders with greater three-dimensionality. Our system can image both the dorsal and ventral sides of pinned specimens. Together with our processing pipeline, the descriptive data can be used to systematically investigate multispectral colors and shapes based on full-wing reconstruction and a universally applicable ground plan that objectively quantifies wing patterns for species with different wing shapes (including tails) and venation systems. Basic morphological measurements, such as body length, thorax width, and antenna size are automatically generated. This system can increase exponentially the amount and quality of trait data extracted from museum specimens.
Here we describe a new genus, for a new species of riffle beetle, Hypsilara royi gen. n. and sp. n., from the tepui Cerro de la Neblina in southern Venezuela. This new genus can be distinguished from all other laraine genera by its small size (ca. 4.5 mm) and the presence of a shallow, wide, V-shaped groove across the apical third of the pronotum. An updated key to the genera of Western Hemisphere Larainae is provided, along with information on habitat and collection methods for this taxon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.