Abstract. Near-infrared (NIR) approaches is considered one of the most well-studied process analyzers evolving from the process analytical technology initiatives. The objective of this study was to evaluate NIR spectroscopy and imaging to assess individual components within a novel tenofovir liposomal formulation. By varying stearylamine, as a positive charge imparting agent, five batches were prepared by the thin film method. Each formulation was characterized in terms of drug entrapment efficiency, release characteristics, particle sizing, and zeta potential. Drug excipients compatibility was tested using Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The obtained results showed an increase in drug entrapment and a slower drug release by increasing the incorporated percentage of stearylamine. The compatibility testing revealed a significant interaction between the drug and some of the investigated excipients. The developed NIR calibration model was able to assess drug, phospholipid, and stearylamine levels along the batches. The calibration and prediction plots were linear with correlation coefficients of more than 0.9. The root square standard errors of calibration and prediction did not attain 5% of the measured values confirming the accuracy of the model. In contrast, NIR spectral imaging was capable of clearly distinguishing the different batches, both qualitatively and quantitatively. A linear relationship was obtained correlating the actual drug entrapped and the predicted values obtained from the partial least squares images.
Tenofovir, currently marketed as the prodrug tenofovir disoproxil fumarate, is used clinically to treat patients with HIV/AIDS. The oral bioavailability of tenofovir is relatively low, limiting its clinical effectiveness. Encapsulation of tenofovir within modified long-circulating liposomes would deliver this hydrophilic anti-HIV drug to the reticuloendothelial system for better therapeutic efficacy. The objectives of the current study were to prepare and pharmaceutically characterize model liposomal tenofovir formulations in an attempt to improve their bioavailability. The entrapment process was performed using film hydration method, and the formulations were characterized in terms of encapsulation efficiency and Caco-2 permeability. An efficient reverse-phase high-performance liquid chromatography method was developed and validated for tenofovir quantitation in both in vitro liposomal formulations and Caco-2 permeability samples. Separation was achieved isocratically on a Waters Symmetry C8 column using 10 mM Na2PO4/acetonitrile pH 7.4 (95:5 v/v). The flow rate was 1 mL/min with a 12 min elution time. Injection volume was 10 µL with ultraviolet detection at 270 nm. The method was validated according to United States Pharmacopeial Convention category I requirements. The obtained result showed that tenofovir encapsulation within the prepared liposomes was dependent on the employed amount of the positive charge-imparting agent. The obtained results indicated that calibration curves were linear with r2 > 0.9995 over the analytical range of 1–10 µg/mL. Inter- and intraday accuracy and precision values ranged from 95% to 101% and 0.3% to 2.6%, respectively. The method was determined to be specific and robust. Regarding the potential of the prepared vectors to potentiate tenofovir permeability through the Caco-2 model, a 10-fold increase in tenofovir apparent permeability was observed compared to its oral solution. In conclusion, this novel and validated method was successfully applied to characterize both in vitro encapsulation efficiency and Caco-2 permeability transport for the pharmaceutical assessment of novel tenofovir formulations.
The aim was to investigate the potential of proliposomes to improve the permeability of tenofovir, anti-HIV, for oral delivery. Tenofovir was incorporated into phosphatidylcholine proliposomes and their absorption was determined in Caco-2 cell cultures grown on Transwell inserts using aqueous drug solutions as reference. Five batches of proliposomes were prepared with different stearylamine levels and characterized in terms of vesicular morphology, drug encapsulation efficiency (EEF), drug leakage, vesicular sizing and surface charges. Cytotoxicity of the reconstituted liposomes was evaluated by the MTT assay. The obtained results showed that increasing the incorporated percentage of stearylamine led to an increase in drug encapsulation, a slower drug leakage and larger liposomes formed. Compared to the drug solutions at corresponding concentrations, the proposed formulations showed a positive relationship (R²= 0.9756) for the influence of increasing the stearylamine percentage on reduction of mitochondrial activity. Regarding the drug permeability, enhancements of apparent permeability by 16.5- and 5.2-folds were observed for proliposomes formulations with 5% and 15% stearylamine, respectively. A good correlation was observed between the Caco-2 and dialysis models that might indicate passive diffusion as well as paracellular transport as suggested mechanisms for drug absorption. Cationic proliposomes offered a potential formulation to improve the permeation of tenofovir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.