Purpose: The proinflammatory cytokine interleukin-32 (IL-32) is a novel tumor marker highly expressed in various human carcinomas, including gastric cancer. However, its effects on prognosis of patients with gastric cancer and cancer metastasis are virtually unknown at present. The main aim of this study was to explore the clinical significance of IL-32 in gastric cancer and further elucidate the molecular mechanisms underlying IL-32-mediated migration and invasion.Experimental Design: Gastric cancer cells with ectopic expression or silencing of IL-32 were examined to identify downstream molecules and establish their effects on cell motility, invasion, and lung metastasis in vivo.Results: IL-32 was significantly upregulated in gastric cancer and positively correlated with aggressiveness of cancer and poor prognosis. Ectopic expression of IL-32 induced elongated morphology and increased cell migration and invasion via induction of IL-8, VEGF, matrix metalloproteinase 2 (MMP2), and MMP9 expression via phosphor-AKT/phospho-glycogen synthase kinase 3b/active b-catenin as well as hypoxiainducible factor 1a (HIF-1a) signaling pathways. Conversely, depletion of IL-32 in gastric cancer cells reversed these effects and decreased lung colonization in vivo. Examination of gene expression datasets in oncomine and staining of gastric cancer specimens demonstrated the clinical significance of IL-32 and its downstream molecules by providing information on their coexpression patterns.Conclusions: IL-32 contributes to gastric cancer progression by increasing the metastatic potential resulting from AKT, b-catenin, and HIF-1a activation. Our results clearly suggest that IL-32 is an important mediator for gastric cancer metastasis and independent prognostic predictor of gastric cancer. Clin Cancer Res; 20(9); 2276-88. Ó2014 AACR.
Malignant ascites is a common complication in the late stages of epithelial ovarian cancer (EOC) that greatly diminishes the quality of life of patients. Malignant ascites is a known consequence of vascular dysfunction, but current approved treatments are not effective in preventing fluid accumulation. In this study, we investigated an alternative strategy of targeting macrophage functions to reverse the vascular pathology of malignant ascites using fluid from human patients and an immunocompetent murine model (ID8) of EOC that mirrors human disease by developing progressive vascular disorganization and leakiness culminating in massive ascites. We demonstrate that the macrophage content in ascites fluid from human patients and the ID8 model directly correlates with vascular permeability. To further substantiate macrophages’ role in the pathogenesis of malignant ascites, we blocked macrophage function in ID8 mice using a colony-stimulating factor 1 receptor kinase inhibitor (GW2580). Administration of GW2580 in the late stages of disease resulted in reduced infiltration of protumorigenic (M2) macrophages and dramatically decreased ascites volume. Moreover, the disorganized peritoneal vasculature became normalized and sera from GW2580-treated ascites protected against endothelial permeability. Therefore, our findings suggest that macrophage-targeted treatment may be a promising strategy toward a safe and effective means to control malignant ascites of EOC.
Thyroid hormone (T 3 ) signaling through the thyroid hormone receptor (TRa1) regulates hepatoma cell growth and pathophysiology, but the underlying mechanisms are unclear at present. Here, we have shown that the oncomir microRNA-21 (miR-21) is activated by T 3 through a native T 3 response element in the primary miR-21 promoter. Overexpression of miR-21 promoted hepatoma cell migration and invasion, similar to that observed with T 3 stimulation in hepatoma cells. In addition, anti-miR-21-induced suppression of cell migration was rescued by T 3 . The Rac-controlled regulator of invasion and metastasis, T-cell lymphoma invasion and metastasis 1 (TIAM1), was identified as a miR-21 target additionally downregulated by T 3 . Attenuation and overexpression of miR-21 induced upregulation and downregulation of TIAM1, respectively. TIAM1 attenuation, in turn, enhanced migration and invasion via the upregulation of b-catenin, vimentin, and matrix metalloproteinase-2 in hepatoma cells. Notably, correlations between TRa1, miR-21, and TIAM1 expression patterns in animal models paralleled those observed in vitro. In the clinic, we observed a positive correlation (P ¼ 0.005) between the tumor/nontumor ratios of TRa1 and miR-21 expression, whereas a negative correlation (P ¼ 0.019) was seen between miR-21 and TIAM1 expression in patients with hepatoma. Our findings collectively indicate that miR-21 stimulation by T 3 and subsequent TIAM1 suppression promotes hepatoma cell migration and invasion. Cancer Res; 73(8); 2505-17. Ó2013 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.