Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory through interactions with multiple memory systems. The cellular mechanisms for this interaction remain unresolved. Memory-modulating BLA manipulations influence expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc) in the dorsal hippocampus, and hippocampal expression of Arc protein is critically involved in memory consolidation and long-term potentiation. The present studies examined whether this influence of the BLA is specific to the hippocampus and to Arc protein. Like the hippocampus, the rostral portion of the anterior cingulate cortex (rACC) is involved in the consolidation of inhibitory avoidance (IA) memory, and IA training increases Arc protein in the rACC. Because the BLA interacts with the rACC in the consolidation of IA memory, the rACC is a potential candidate for further studies of BLA modulation of synaptic plasticity. The alpha isoform of the Calcium/Calmodulin-dependent protein kinase II (CaMKIIα) and the immediate early gene c-Fos are involved in long-term potentiation and memory. Both Arc and CaMKIIα proteins can be translated in isolated synapses, where the mRNA is localized, but c-Fos protein remains in the soma. To examine the influence of memory-modulating manipulations of the BLA on expression of these memory and plasticity-associated proteins in the rACC, male Sprague–Dawley rats were trained on an IA task and given intra-BLA infusions of either clenbuterol or lidocaine immediately after training. Findings suggest that noradrenergic stimulation of the BLA may modulate memory consolidation through effects on both synaptic proteins Arc and CaMKIIα, but not the somatic protein c-Fos. Furthermore, protein changes observed in the rACC following BLA manipulations suggest that the influence of the BLA on synaptic proteins is not limited to those in the dorsal hippocampus.
Retrieving fear memories just prior to extinction has been reported to effectively erase fear memories and prevent fear relapse. The current study examined whether the type of retrieval procedure influences the ability of extinction to impair fear renewal, a form of relapse in which responding to a conditional stimulus (CS) returns outside of the extinction context. Rats first underwent Pavlovian fear conditioning with an auditory CS and footshock unconditional stimulus (US); freezing behavior served as the index of conditioned fear. Twenty-four hours later, the rats underwent a retrieval-extinction procedure. Specifically, 1 h prior to extinction (45 CS-alone trials; 44 for rats receiving a CS reminder), fear memory was retrieved by either a single exposure to the CS alone, the US alone, a CS paired with the US, or exposure to the conditioning context itself. Over the next few days, conditional freezing to the extinguished CS was tested in the extinction and conditioning context in that order (i.e., an ABBA design). In the extinction context, rats that received a CS+US trial before extinction exhibited higher levels of conditional freezing than animals in all other groups, which did not differ from one another. In the renewal context, all groups showed renewal, and none of the reactivation procedures reduced renewal relative to a control group that did not receive a reactivation procedure prior to extinction. These data suggest retrieval-extinction procedures may have limited efficacy in preventing fear renewal.
Acute administration of the stress hormone corticosterone enhances memory consolidation in a manner that is dependent upon the modulatory effects of the basolateral complex of the amygdala (BLA). Posttraining administration of corticosterone increases expression of the activity-regulated cytoskeletal-associated protein (Arc) in hippocampal synaptic-enriched fractions. Interference with hippocampal Arc expression impairs memory, suggesting that the corticosterone-induced increase in hippocampal Arc plays a role in the memory enhancing effect of the hormone. Blockade of β-adrenoceptors in the BLA attenuates the corticosterone-induced increase in hippocampal Arc expression and blocks corticosterone-induced memory enhancement. To determine whether posttraining corticosterone treatment affects Arc protein expression in synapses of other areas of the brain that are involved in memory processing, a memory-enhancing dose of corticosterone was administered to rats immediately after inhibitory avoidance training. As seen in the hippocampus, Arc protein expression was increased in synaptic fractions taken from the prelimbic region of the medial prefrontal cortex (mPFC). Blockade of Arc protein expression significantly impaired memory, indicating that the protein is necessary in the mPFC for long-term memory formation. To test the hypothesis that blockade of β-adrenoceptors in the BLA would block the effect of systemic corticosterone on memory and attenuate mPFC Arc expression, as it does in the hippocampus, posttraining intra-BLA microinfusions of the β-adrenoceptor antagonist propranolol were given concurrently with the systemic corticosterone injection. Although this treatment blocked corticosterone-induced memory enhancement, it increased corticosterone-induced Arc protein expression in mPFC synaptic fractions. These findings suggest that the BLA mediates stress hormone effects on memory by participating in the negative or positive regulation of corticosterone-induced synaptic plasticity in efferent brain regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.