A critical task in evolutionary genetics is to explain the persistence of heritable variation in fitness-related traits such as immunity. Ecological factors can maintain genetic variation in immunity, but less is known about the role of other factors, such as antagonistic pleiotropy, on immunity. Sexually dimorphic immunity-with females often being more immune-competent-may maintain variation in immunity in dioecious populations. Most eco-immunological studies assess host resistance to parasites rather than the host's ability to maintain fitness during infection (tolerance). Distinguishing between resistance and tolerance is important as they are thought to have markedly different evolutionary and epidemiological outcomes. Few studies have investigated tolerance in animals, and the extent of sexual dimorphism in tolerance is unknown. Using males and females from 50 Drosophila melanogaster genotypes, we investigated possible sources of genetic variation for immunity by assessing both resistance and tolerance to the common bacterial pathogen Pseudomonas aeruginosa. We found evidence of sexual dimorphism and sexual antagonism for resistance and tolerance, and a trade-off between the two traits. Our findings suggest that antagonistic pleiotropy may be a major contributor to variation in immunity, with implications for host-parasite coevolution.
Male and female animals exhibit differences in infection outcomes. One possible source of sexually dimorphic immunity is the sex-specific costs of immune activity or pathology, but little is known about the independent effects of immune- versus microbe-induced pathology and whether these may differ for the sexes. Here, by measuring metabolic and physiological outputs in Drosophila melanogaster with wild-type and mutant immune responses, we test whether the sexes are differentially impacted by these various sources of pathology and identify a critical regulator of this difference. We find that the sexes exhibit differential immune activity but similar bacteria-derived metabolic pathology. We show that female-specific immune-inducible expression of PGRP-LB, a negative regulator of the immune deficiency (IMD) pathway, enables females to reduce immune activity in response to reductions in bacterial numbers. In the absence of PGRP-LB, females are more resistant to infection, confirming the functional importance of this regulation and suggesting that female-biased immune restriction comes at a cost.
The origins and causes of infection pathologies are often not understood. Despite this, the study of infection and immunity relies heavily on the ability to discern between potential sources of pathology. Work in the fruit fly has supported the assumption that mortality resulting from bacterial invasion is largely due to direct host-pathogen interactions, as lower pathogen loads are often associated with reduced pathology, and bacterial load upon death is predictable. However, the mechanisms through which these interactions bring about host death are complex. Here we show that infection with the bacterium Francisella novicida leads to metabolic dysregulation and, using treatment with a bacteriostatic antibiotic, we show that this pathology is the result of direct interaction between host and pathogen. We show that mutants of the immune deficiency immune pathway fail to exhibit similar metabolic dysregulation, supporting the idea that the reallocation of resources for immune-related activities contributes to metabolic dysregulation. Targeted investigation into the cross-talk between immune and metabolic pathways has the potential to illuminate some of this interaction.
The life history strategies of males and females are often divergent, creating the potential for sex differences in selection. Deleterious mutations may be subject to stronger selection in males, owing to sexual selection, which can improve the mean fitness of females and reduce mutation load in sexual populations. However, sex differences in selection might also maintain sexually antagonistic genetic variation, creating a sexual conflict load. The overall impact of separate sexes on fitness is unclear, but the net effect is likely to be positive when there is a large sex difference in selection against deleterious mutations. Parasites can also have sex-specific effects on fitness, and there is evidence that parasites can intensify the fitness consequences of deleterious mutations. Using lines that accumulated mutations for over 60 generations, we studied the effect of the pathogenic bacterium Pseudomonas aeruginosa on sex differences in selection in the fruit fly Drosophila melanogaster. Pseudomonas infection increased the sex difference in selection, but may also have weakened the intersexual correlation for fitness. Our results suggest that parasites may increase the benefits of sexual selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.