Unprecedented development along tropical shorelines is causing severe degradation of coral reefs primarily from increases in sedimentation. Sediment particles smother reef organisms and reduce light available for photosynthesis. Excessive sedmentation can adversely affect the structure and function of the coral reef ecosystem by altering both physical and biological processes. Mean sediment rates and suspended sediment concentrations for reefs not subject to stresses from human activities are < 1 to ca 10 mg cm-* d-' and < 10 mg I-', respectively. Chronic rates and concentrations above these values are 'hlgh'. Heavy sedmentation is associated with fewer coral species, less live coral, lower coral growth rates, greater abundance of branching forms, reduced coral recruitment, decreased calcification, decreased net productivity of corals, and slower rates of reef accretion. Coral species have different capabilities of clearing themselves of sediment particles or surviving lower light levels. Sedlment rejection is a function of morphology, orientation, growth habit, and behavior; and of the amount and type of s e l m e n t . Coral growth rates are not simple indicators of sediment levels. Decline of tropical fisheries is partially attributable to deterioration of coral reefs, seagrass beds, and mangroves from sedimentation. Sedimentation can alter the complex interactions between fish and their reef habitat. For example, sedimentation can lull major reef-building corals, leading to eventual collapse of the reef framework. A decline in the amount of shelter the reef provides leads to reductions in both number of individuals and number of species of fish. Currently, we are unable to rigorously predict the responses of coral reefs and reef organisms to excessive sedimentation from coastal development and other sources. Given information on the amount of sediment which will be introduced into the reef environment, the coral community composition, the depth of the reef, the percent coral cover, and the current patterns, we should be able to predict the consequences of a particular activity. Models of physical processes (e.g. sediment transport) must be complemented with better understanding of organism and ecosystem responses to sediment stress. Specifically, we need data on the threshold levels for reef orgarusms and for the reef ecosystem as a whole -the levels above which sedimentation has lethal effects for particular species and above which normal functioning of the reef ceases. Additional field studies on the responses of reef organisms to both temgenous and calcium carbonate sediments are necessary. To effectively assess trends on coral reefs, e.g. changes in abundance and spatial arrangement of dominant benthic organisms, scientists must start using standardized monitoring methods. Long-term data sets are critical for tracking these complex ecosystems.
In January 1989, a long-term study site was established on a coral reef off the south coast of St. John, U.S. Virgin Islands. Five 20 m transects were installed at depths of ca 11 to 13 m. Hurricane Hugo struck St. John on September 17 and 18, 1989 Analysis of quantitative data collected before and after the storm allowed documentation of the effects of this powerful storm on coral community structure. The total living cover by scleractinians, including the dominant species, Montastrea annularis, decreased significantly. The amount of substrate available for colonization increased. Cover by macroscopic algae increased dramatically after the storm, later decreased, and then rose again 1 yr later. In spite of the reduction in live cover by the dominant coral species, neither diversity (H') nor evenness (J') increased. Topographical complexity, estimated from calculations of spatial indices, did not decrease along the transects as a result of the storm. No measurable recovery of the live corals has occurred in the 12 mo following the initial post-storm survey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.